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ABSTRACT 

We generalize the theory of Nash-Williams on well quasi-orders and better 
quasi-orders and later results to uncountable cardinals. We find that the first 
cardinal K for which some natural quasi-orders are K-well-ordered, is a 
(specific) mild large cardinal. Such quasi-orders are ~ (the class of orders 
which are the union of <- A scattered orders) ordered by embeddability and the 
(graph theoretic) trees under embeddings taking edges to edges (rather than to 
passes). 
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w Introduction 

We call a quasi-order Q well-ordered if for every q, ~ Q (n < o) ,  for some 

n < m, q, =< q,,. There is a beautiful and extensive theory on this notion, mainly 

on proving various quasi-orders are well-ordered. See E rdos -Rado  [2], Higman 

[4], Kruskal [7], [8], Ratio [21] for the easier parts. For the harder theorems,  

Nash-Williams suggests a smaller class, that of bqo (better quasi-order) which 

has a more complicated definition but stronger closure properties. ( Important  

cases are: if Q is bqo, so is Seq<=(Q)={(q~ : i  < c~):a  an ordinal, q~ E Q}, 

(q~ : i < a )  =< (q'  : i < /3 )  iff there is a strictly increasing h : a -~/3, q~ _-< qh<O (and 

similar results on the power set and its iteration); the class of trees of height w, 

with the order being: embedding by a function preserving < (and more)  but not 

the level; you can formulate it in graph theoretic terms.) (See [15-20].) 

Laver uses this to get deep results: some classes of orders and trees are bqo. 

But we were initially interested just in trees ordered by such embeddings which 

preserve the level.* Of course this class is not well-ordered, but we want to know 

whether for every A it has A pairwise incomparable elements. A natural 

approach is to say Q is K-well-ordered iff for every q~ @ Q (i < K) for some i < j, 

q~ < qs, and to try to generalize Nash-Williams' theory. Notice however that 

some of the tools are missing: of course the choice of minimal subset like [15], 

but more important  is that the Ramsey theorem becomes problematic (K has to 

be weakly compact)  and even more Nash-Williams'  generalization of it which 

says "every block contains a barr ier"  (K has to be Ramsey). 

We succeed in proving the parallel of his basic theorems on "Q is bqo iff every 

~ ,  (Q) is well-ordered" for any K, but we have to change somewhat  his basic 

definitions. In ~ (Q) we have to assume for A C_ Q, a E Q, that A =< a when 

(Vx E A ) x _-__ a (usually we say A ;~ a).  Alternatively we demand Q x (co, =< ) is 

K-bqo. Also we lose "every block contains a barr ier"  so we have to use another  

intermediate notion K-I-barrier ,  and call our notion K-I-bqo.  

We develop this also for a twin notion. We call Q K-narrow if for q, E Q 

* This is interesting because of more general problems in model theory, see [23]. 
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(i < K) for some i# j ,  q~ <=qj. If we replace consistently K-well-ordered by 

K-narrow, we get K-D-barriers, K-D-bqo. 

Let the well-ordering number of Q be the first K such that Q is K-well-ordered. 

But if we want to go any further, we have to consider some mildly large 

cardinal, but don' t  be afraid if you don' t  believe in them. The theorems do not 

say "if some large cardinal exists t hen . . . "  but rather "the well-ordering cardinal 

of some naturally defined Q is a specific large cardinal": so our results are 

meaningful even if no such cardinal exists. 

How are we forced to large cardinals? If Q is not No-narrow, and countable, 

then the first K for which Q is K-I-bqo is the first uncountable beautiful cardinal 

(see w mainly 2.5; it is strongly inaccessible but may exist in L). Also, further 

theorems require such K, and a stronger notion - -  [K;A]-I-bqo for any 

No =< A < K. Then we get that the trees we mention are [K;A ]-I-bqo (even when 

labeled by a [K;A ]-I-bqo Q), and also Seq<~(Q). 

Let ~ ,  be the class of ordered sets which are unions of A scattered orders. 

(All ordered sets of power =< A are inside.) Laver proved that ~)~,,, is bqo (under 

embeddability). Again some of his tools disappear ( = the universal (A, K)-order 

of ~ff~, ). 

Generally we proved that under general conditions the I and D versions 

coincide, and the D-well-ordering number is a beautiful cardinal. 

But we prove that the well-ordering number of ~ ,  is the first beautiful K > h. 

REMARK. One property we lose when we generalize well-ordering to K-well- 

ordering is closure under product of two; this is saved for K weakly compact. But 

as for K-X-bqo we have to make K Ramsey. If we want to save this property, a 

reasonable way is as follows. We will have a system ~ = (@, : B a K-X-barrier), 

@~ a filter on B x B, and call Q ~ - X - b q o  if for any K-X-barrier B and q, E Q 

(,7 
1 {(rt, ~,): r t E B ,  ~ ,EB,  ~R• q, < q , } e  @B. 

For closure under product of A, the filters have to be A+-complete. 

For K > 2 "o, a natural filter is: @~ is generated by the sets G(B, M), M a 
model with universe K and say No relations, where 

G(B,M)={07, ~,): 7 / E B ,  1, E B ,  rIR~,,  and 77, ~' realize the same type 

in the model M [over the set {a : a  < min{~(/), v(/): /}]} 

REMARK. Most of the results (mainly in w go through for K an ordinal 

(infinite for X = D, limit for X = I). Moreover  we have not used the hypothesis 

that the two place relation < on Q is a quasi-order. We can define "K-X-well- 
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ordered", [K;a ]-X-bqo for any Q = (Q, R), R a two place relation, as well as, 

e.g., ~ (Q). We have not developed this theorem as we have no particular 

application in mind. 

I would like to thank M. Magidor for several helpful discussions and 

information on large cardinals, and R. Holzman for his very careful checking, 

and correcting errors. 

Review 

w We define X-barrier (0.1), the depth Dp('o,B), Dp(B)  (0.2) and prove 

some technical claims to be used later. 

w We define K-well-ordered (K-narrow), B-bqo, (r,a)-X-bqo, etc. (1.1), 

product (of quasi-orders) (1.2), ~(Q), ~ ( Q ) ,  ~*(Q), ~**(Q), ~O(Q) (1.3), 

characterize order in ~<~(Q) (1.7). We prove r -X-bqo is preserved by ~ (1.8), 

1.10 is a simple case, 1.9 is used later. By 1.11, Q is K-X-bqo iff for every 3' ~v (Q) 

is K-X-bqo iff ~<,.(Q) is K-X-well-ordered. The proof Q not r-X-bqo--~ ~ (Q) 

not K-X-well-ordered is carried out in 1.12. 

w We present weakly compact, Ramsey and beautiful cardinals (2.1-2.4). 

Important for the paper is 2.5: if Q is not x-narrow, then for some a the ~ -  

well-ordering number of ~ (Q) is _-> the first beautiful K > X. In 2.7 we define 

[K, a ; h ]-X-bqo, [K ; h ]-X-bqo, [K]-X-bqo and give easy facts (2.8, 2.9). By 2.10, 

if [QI< K, K beautiful then Q is [K]-X-bqo. By 2.11, essentially Q is [K;h]-X- 

bqo iff Q~ is K-X-bqo iff Q • (A, = )  is K-X-bqo. In 2.12 we give a trivial 
sufficient condition for non-K-narrowness, and by 2.13, [K ; A ]-D-'bqo, [r  ; )t ]-I- 

bqo are equivalent for h _-> 1%, hence (2.14) the first K s.t. Q is [K ; h ]-X-bqo is 
beautiful. By 2.15 "[K;A ]-X-bqo" is preserved by ~o.  

w We investigate our notions for Q linear and get examples showing that 

X = D, X = I may behave very differently (3.1, 3.2); in 3.3-3.5 we get other 

examples, e.g., for the first beautiful K > No we get a K-I-bqo linear Q which is 

not [K ; 2]-I-bqo. 

w Here we generalize the theorems on preservation of well-ordering (rather 

than of bqo). 

We define ~J<K(Q) (4.1), prove (4.2) that for K weakly compact, Q K-well- 

ordered, ~<, (Q) is K-well-ordered, we present subtle, almost ineffable (4.3, 

4.4) and prove (4.5) that for K almost ineffable, Q K-well-ordered, ~<,(Q) is K- 

well-ordered. In the rest of the section we deal with the question when an 

X-barrier has a subbarrier of some depth; and (4.10) prove that a counterexam- 

pie to "~o (Q) is D-well-ordered" can be chosen to have small hereditary 

cardinality. 
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w We introduce some classes of (labeled) trees 3-t, 3-t(Q), 3-~(Q) (for 

l = 0 , 1 , 2 )  and embedding notions. The main theorem 5.3 says 3-t(Q) is 

[K ;l%]-bqo if Q is (l = 0,1,2). For this we reduce it to the well-founded case in 

5.4, and give a general criterion to [K;h]-X-bqo in 5.5. (Some previous proofs 

could have used it.) Theorem 5.6 suggests "Q • (~o, -< ) is K-X-bqo" as natural 

(e.g. equivalent to U ~ * * ( Q )  is r -X-bqo)  and in 5.7, 5.8 we compute the 

well-ordering number of 3-", 3-O(Q). 

w We define 33~ (union of h scattered orders), 9~  [Q], and give their 

representation by trees (6.2-6.6) hence bounding the well-ordering number. We 

also get a bound for the well-ordering number of Seq<=(Q) (6.8, 6.9) and 

compute the well-ordering number of ~ (6.11, 6.12). 

w We present 3 --2, 3- l (with which Nash-Williams has dealt) and other 

variants 3- -~, 3--2.5, define local embeddability, and compute the well-ordering 

number of 3--~(Q), 3- Z(Q), 3--2.5(Q), and ~<~(Q). 

REMARK. Many questions remain open, but we have not tried to exhaust 

either the problems or the conclusions. 

NOTATION. Let h, /z, K, X be cardinals, usually infinite, a, /3, y, ~, if, i, j be 

ordinals, 6 a limit ordinal. Let ( -  1) + a be the unique y, a = 1 + y. Let l, m, n, r, 

k be natural numbers, r/, v, o- be sequences of ordinals, l(r/) the length of r/ (an 

ordinal), r/(i) the ith element of r/, r/^v the concatanation of r / and  v, and r/_--- v 

(7/,~ v) means 77 is a (proper) initial segment of v. 

Let r/ be the unique sequence satisfying r / =  (r/(0))^-q -. 

Let iR~ mean i < j and iR~j  mean i /  j. 
Let X denote I or D, and r/R~u mean -q-N v and r/(0)R~ When r / -N v 

let r/U* v be (r/(0))^v. 

Let I A[ be the cardinality of A. 

We call Q = (0,  -<- ) a quasi-order if x <- x, and x <= y ^ y <_- z =)~ x <= z for any 

x, y, z E Q. We let I QI = O so [[Q[[ is I QI ,  called the cardinality of Q, but 

sometimes we forget to distinguish between O and Q (when the order is clear),. 

so a E Q  means a E O. Note that we have not assumed x _-< y ^ y ~ x  ~ x = y, 

and let x < y  mean x_-<y but not y_-<x. 

Let Seq~(A)={r / :~  7 is a sequence from A of length a}, 

Seq<~ (A) = U Seq~ (A). 
.8<o~ 

For a set A of ordinals 
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X Seq, (A)  = {7 E Seq~ (A) :  (Vi)(i + 1 < 1(~)--~ ~t(i)R~rt(i + 1))}, 

X Seq<~ (A)  = U X Se% (A). 
13<a 

Note that any ~ E 1 Seq~ (A), for n =< w, is increasing, and ~ ~ X Seq~ (A),  

/3 < n implies r t [/3 E X Seq~(A) (obviously Seq satisfies this t o o ) a n d  r/, v E 

X S e q ~ ( A ) ,  -qR~,v implies ,~ U* v G X S e q ~ ( A ) .  

0.1. DEVINmON. (1) If B is a set of finite sequences of ordinals, its domain 

D o m B  = D o r a ( B ) i s  U ~ s  Range(q).  We call B C X S e q < ~ ( D o m B ) a n  X-  

barrier if: 

(a) for every ~ EXSe%(DomB)  for some n <w,  TI In E B ,  

(b) no member of B is an initial segment of another, 

(c) if 7 /~  B, then there is no v<  7 -  in B (but we do not forbid ~7- = v E B), 

(d) B has at least two members (so the empty sequence ( ) is not in B)  and 

Dora B has no last element when X = I and Dora B is infinite when X = D. 

(2) We define K-I-barrier (K-D-barrier) similarly, adding 

(e) Dora B is a subset of K of order type K, but for notational simplicity we 

usually deal with the case Dora B = K. 

REMARK. In the definition of an /-barrier,  we deviate from the definition 

Nash-Williams and Laver use, in (c). 

REMARK. A set B cannot be both an / -ba r r i e r  and a D-barrier ,  except when 

B = {(n): n E D o m B }  

o r  

B = {(n ) : n E Dom B - {no}} U {(no, n)  : n ~ Dora B - {no}}, 

where no is the least ordinal in Dora B. 

0.2. DEFINITION. Let X @ {I, D}, B an X-barrier,  r/@ X Seq<~ (Dora B). 

(1) we define an ordinal a = Dp(rt, B)  as follows: 
(a) if there is v ~  r/, v E B then a =0 ;  

(b) if (a) fails then a = U{Dp(r~ ^(i), B ) +  1" ~/^(i) E X Seq<~ (Dora B)}. 

(2) We define Dp(B) ,  the depth of B, as Dp(( ), B). 

0.3. CLAIM. Definition 0.2 well defines Dp(~/ ,B)  uniquely, and it is 

< IDomB[  ~ . 

PROOF. By part (1)(b) of Definition 0.2, and (1)(a) of Definition 0.1. 

0.4. CLAIM. Let B be an X-barrier,  X E{I,D}. 
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(1) If r / E  X Seq<~ (Dom B)  then for some v E B, r/ and u are comparab le ,  

i . e . ,  r / ~  v or v ~  ~. 

(2) Moreover ,  in (1), if X = I and A _C Dom B is unbounded ,  or X = D and 

A C D o m B  has _->2 elements ,  we can assume (Vm)(l(r/)<=m<l(v)~ 
v(m)EA).  

(3) If r / E  B, then there  is v, 77 R~v, v E B, and we can add the demands  of (2). 

(4) If i E Dom B, iR~ 77 E B, then for some k = l(r/) ,  ( i )^(r / I  k)  ~ B. 

PROOF. (1) and (2). We can find v,,EXSeq~(DomB), r/<v,,, such that  

(Vm)(l(r/)<-m <to~vo(m)EA);  this is by part  ( d ) o f  Defini t ion 0.1(1). 

Now by part (a) of the definit ion for some k < to. yolk E B, and choose 

v = v0Ik. 

(3) We act as in the proof  of (2) for  77 , but  if l (r / )  = 1, we require  r/(0)R~J~v(0). 

The  v we get satisfies r / - <  v as u,~ r/- cannot  hold by part  (c) of Definit ion 

0.1(1); and as l (r / )  = 1 implies r / (0)R~ clearly r /R~v.  

(4) Easy, by (1) and Definit ion 0.1(1)(c) ( r emember  ( ) ~  B).  

0.5. CLAIM. If B is an / -bar r ie r ,  r /@ B, v E I Seq<~ (Dom B )  and r /( i )  < 

v(])  for  every i < l(r/),  J < / ( v ) ,  then we can find r/t @ B (l _-< l ( r / ) ) such  that: 

(a)  r/o = r/, 
1 (b) ~7~_-< r/,+l for l < l(r/) and even r/IRDr/l+,, 

( C ) . ,  r/. .) are =<-comparable,  hence if v E B then v = 77..). 

(d) r/~ (k,) = r/.. (k2) iff k, + l = k2+ m (where 0 =  < k~ < l(r/,), 0 <- k2< l(n,.)). 

PROOF. We define by induction on l =</(r/), r/l E B such that: 

(i) r /o= r/, 
(ii) r/L~ ~ r/s and even r/~-iR~r/l, 

(iii) r/l and ( r / (m) :  I --< m < l(r/))^u are comparable .  

For  l = 0 there  is no problem.  Suppose  we have defined for l, let a be the 

longer of the sequences r/l, (~l(m) : l =< m < l(r/))^v. By 0.4(2), we let r/~+~ be a 

sequence from B comparable  with or , hence 0.5(d) holds. 

0.6. CLAIM. If B is a D-bar r ie r ,  r / C  B, v E D Seq<~ (Dom B )  and l ( v ) >  

0--> r / ( l ( r / ) -  1 ) ~  v(0), then we can find r/t @B (l _-< l(-t/)) such that: 

(a) r/o = r/, 
1 (b) r / i  ~ r /H for l < l(r / )  and even r/t RDr/l+l, 

(C) v, r/ , ,)  are ~ -comparable ,  hence if v E B then v = r/ , ,) .  

PROOF. Similar to that of Claim 0.5. 
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0.7.  CLAIM. Suppose B is an X-barrier. Then for every r/, u @ 
X Seq<~ (Dom B), 7/- _-< u implies 

Dp(r/, B)_-  < Dp(r/ ,B)_ -  > Dp(u ,B) .  

PROOF. By the definition of Dp (Definition 0.2) it is trivial that ul --< u2 implies 

Dp(u~,B)>-_Dp(u2, B). So we have just to prove: Dp(r/,B)=< Dp( r / - ,B ) ,  and 

we prove this by induction on Dp(r/ , B). 

Case I. Dp(r/ , B ) = 0  

By the definition of Dp, this implies that for some k _-< l(r/ ), (7/-) [ k E B. 

By Claim 0.4(4) this implies that for some re-<k,  r / r ( m + l ) =  

(r/(0))^((rt-)r m ) E  B. Clearly m + 1 < k + 1 -_< l( 'q-)+ 1 < / ( r / ) ,  so this implies 

Dp (~7, B)  = 0. 

Case II. D p ( r t - , B ) > 0  

We can assume that Dp(-q, B ) >  0 too (otherwise the conclusion is trivial). 

Whenever r/^(i) E X Seq<~ (Dora B)  then Dp ((r/^(i)) , B)  < Dp(r / - ,  B)  (as 

-q-<(r/^(i)) -, by the definition of Dp), hence by the induction hypothesis 

Op (rt^(i), B)=< Dp ((rt ^(i))-, B)  = Op((7/ )^(i), B). 

So by Definition 0.2(1)(b), the above inequality, and Definition 0.2(1)(b), 

respectively, 

Dp(r/, B)  = U{Dp(r/^(i) ,  B ) +  l:rl^(i)EXSeq<,.(DomB)} 

< U{Dp ( ( r / -  )^(i), B ) +  1 :(~ - )^(i) E X Seq<~ (Dom B)} 

= D p ( n - , B  ) . 

So we finish. 

0.8. CLAIM. Suppose B is a K-I-barrier, ~ E B ~ l(~,) = 2 and let us define 

B D = {7/E D Seq<~ (K): ~/ is not monotonic, and for every k < l(~), 7/[ k is 

monotonic but not in B).* 

Then B * =  B U B ~' is a r -D-bar r ie r  (with the same domain K). 

PROOF. We check Definition 0.1. Clearly Dora B* = K. 

(a) If ~ E D S e q ~ ( K ) ,  if for some k, 7 / Ik  E B ,  then 71IkEB*;  if not, 

cannot be monotonically increasing (as B is a K./-barrier) nor monotonically 

t The aim of this claim is to be used in 2.13 (with 0.9). If we put inside all decreasing sequences of a 
constant length, for any function F with small range, for some r/,v of this length, "oRgy, 
F(~)---  F(v) ,  which is what we want to avoid in 2.13. 
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decreasing (as r is well-ordered). So there is a minimal k for which , / r  k is not 

monotonic; obviously 7/[ k E B ~ C B*. 

(b) Suppose 77, u E B* and rl < u. It is impossible that ~/, v E B as B is a 

K-I-barrier; also it is impossible that 7, u E B ~ or 7 E B, u ~ B  ~ (by the 

definition of B ~  We are left with the case '1 E B o, u E B, but u is increasing 

(as B C I Seq<,~ (r))  whereas 7 is not monotonic, contradiction. 

(c) Suppose 7, v E B*, u <  r/-. Clearly "0, u E B is impossible and also 7, v 

B ?  (as then r/r (l(u) + 1) is not monotonic, l (v)  + 1 < l(r/)). Obviously, u E B o, 

r / ~  B is impossible (as 7 is monotonic, u is not). At last, if r / E  B~ v E B, so 

l(u)>= 2, then, as r I t3----< 77 rt(/(u) + 1).~ r I is monotonic, u increasing, r/(0)< 

r/(1) = u(0), so (7(0))^v E I Seq<. (r) .  Hence for some m =< l(u), 

(~/(0))^(u r m ) E B  so 7 r(m + 1 ) E B  contradicts 7 ~ B  ~ 

(d) ]B*I_->}BI>_-2. 

0.9. CLAIM. Suppose B, B D, B* are as in 0.8, 

B~,={~? E B ~ : l (~ ' )=  n, 7 (0 )<  7(1)}, 

B,~ {7 E S ~ : l ( 7 ) =  n, 7 (0 )>  7(1)}, 
J / 

D : D then B D is the disjoint union of the B ..... B,.d (3<_--n < to) and if 7, t, E B * ,  

7R~,u then exactly one of the following occurs: 

(a) 7 E B, 
D D - (b) 7CB.+1 , . ,  v E B . . . ,  v = r /  for some n =  >3 ,  
D D - (c) 7EB.+I ,d ,  uEB. ,~ ,  v = r /  for some n =  >3 ,  

D (d) 7 E B b , ,  , L B , , d ,  7 = u r 2 ,  
D D - (e) 7EB3.~ ,  . @ B  .... r/ = . [ 2 ,  

(f) 7 ~ B ~ a ,  r, E S ,  7 - - - u t 2 .  

PROOF. Easy. 

0.10. CLAIM. Suppose B, B D, B* are as in 0.8. Then Dp(B*)_- < 

Max{Dp (B), r }. 

PROOF. We first establish, by induction on Dp (7, B *), that for monotonically 

decreasing 7, 1 < l ( 7 ) <  ~o, Dp(7, B * ) -  < r / ( l ( 7 ) -  1)+ 1. 

Dp(7, B*) = U{Dp(7^(i) ,  B*)+  1 : 7^ ( i )E  V Seq<~ (r)}. For i > 

rt(l(7 ) -  1), Dp(7 ^(i), B*) = 0, while for i < 7 ( I ( 7 ) -  1), Dp(r/^(i), B*) = < i + 1 

by the induction hypothesis, so Dp(7, B)*_- < " q ( l ( 7 ) - 1 ) +  1, as required. 

Now we show, by induction on Dp(u, B*), that for u E I Seq<~(r), 1 < l(u), 

D p ( u , B * ) = D p ( u , B ) .  By the definitions D p ( u , B * ) = 0  r D p ( u , B ) = 0 .  As- 
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sume now that Dp (u, B *) > 0, then Dp(u, B *) = I,.J{Dp (u ̂ (i), B*) + 1 : u^(i) E 
D Seq<, (K)}. For i < u(l(u)- 1), Dp (u ̂ (i), B*)  = 0, while for i > u(l(u)- 1), 

Dp(u^(i),B*)=Dp(u^(i),B) by the induction hypothesis, so D p ( u , B * ) =  

Dp(u ,B) .  

If l ( u ) = l ,  then it follows by what we have shown that D p ( v , B * ) _  < - 

Max{Dp(u,B),u(O)+l}. Hence Dp(( ), B *) _-< Max{Dp (( ) ,B),K}, as re- 

quired. 

w The basic generalization 

Here we define the central notions generalizing well-ordering and better 

quasi-ordering, and generalize the basic theorem of Nash-Williams that better 

quasi-order is preserved by the operation ~(Q).  

As in Nash-Williams' works, we are interested in proving that various 

quasi-orders are K-well-ordered, or K-narrow. But we are naturally drawn to 

stronger notions (here, e.g., K-X-bqo) as they are preserved by more operations. 

Our main conclusion is that Q is K-X-bqo iff every ~ (Q) is K-X-well-ordered. 

1.1. DEFINITION. (1) A quasi-order Q = (O, ---- ) is K-well-ordered [K-narrow] 

if for every q,~Q ( i < K )  there are i<j<K [i<K, j<K, i#j] such that 
q~ <qj .  

(2) A quasi-order Q = (Q, < ) is B-bqo  (for B an X-barrier, X E {I, D}, bqo 

standing for better quasi-order) if for every q, E Q ( r /E  B)  we can find r/, u E B 
such that r/R~v and qn < q~. For emphasis we write " B - X - b q o " .  

(3) A quasi-order Q is (K, a ) -X-bqo  if for every K-X-barrier B of depth < a, 

Q is B-bqo.  

(4) A quasi-order Q is K-X-bqo if it is (r, a ) -X-bqo  for every a (in fact, for 

every c~ < K+). 

(5) Let K-I-well-order mean K-well-order, and K-D-well-order mean K- 

narrow. 

We do not list the obvious implications and monotonicity properties. 

Now we define some simple operations on quasi-orders. 

1.2. DEFINITION. (1) For quasi-orders Q, = (Q,, <_- ), Q2 = (O2, ---- ) we define 

their product; its set of elements is Q~ • Q2 = {(q~, q2) : q~ E Ql, q2 E Q2} and for 

q~,q~Q~, q2, q~EQ2 

(q~,q2)<=(q~,q~) iff q~<=q~andq2<=q~. 

(2) II,<~ Q, is defined similarly, and Q~ is [li<o Qi where Q, = Q. 
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1.3. DEFINITION. (1) ~ ( O )  is the family of subsets of Q, and if Q = (Q, < ), 

we let _-< be the following order on it: 

A _-< B iff there is a function h : A ---> B, such that q <- h(q) for every q E A. 

So we let ~ ( Q ) =  (~( IQI) ,  <) .  

(2) ~<K(A)=  {C C_ A : I C I <  K}, and ~<K(Q) is defined naturally. 

(3) For any set A we define ~ (A) (a an ordinal) by induction on a as 

follows: 

~o(A ) = A, 

~ . , ( A )  = ~ ( A ) U  ~ ( ~  (A)), 

~8 ( a )  = U ~ (A) (for 8 limit), 
a < 8  

~ < = ( A ) =  U ~ , ( A ) .  

We treat here the elements of A as urelements. Clearly ~ (A) increases kvith 

a, and for x E ~ ,  (A) let Tc (x), its transitive ciosur6, be the minimum transitive 

set which _~{x}. 

(4) For any quasi-order Q = (O, ~ ) and ordinal a, we define the quasi-order 

~ (Q) = ( ~  (O), _-< ) by induction on a :  

For a =0 ,  ot = 8 there is no problem; for a =/3 + 1, A1 <= A2 if] (a) A1,A2E 

~a (A), A~ _-< A2, or (b) A l, A2 E ~ ,  (Q) but not {A1, A2} C_ ~ (Q), and 

(i) there is a function f:A~-->A2, (Vq E A t )  q <-f(q), or 

(ii) A 2 = q E Q  and ( V t E T c ( A I ) ) ( t E Q - - ~ t  < q ) , o r  
(iii) A1 --< A '  E A2 for some A '  (so A1 ~ ~ (Q)). 

(5) ~* (Q)  = ( ~  (Q),_-<*) is defined similarly except that we omit 1.3(4)(b)(ii) 

and demand in 1.3(4)(b)(i) A 2 ~  ~ ( Q )  or 3 1 E  ~ (Q). 

(6) ~**(Q) is defined similarly to ~* (Q)  but we omit the empty sets. 
(7) ~O(Q) is defined similarly to ~ (Q), but we omit the empty sets. 

Some obvious facts are 

1.4. CLAIM. Suppose K is a weakly compact cardinal. 

(1) If Q1, Q2 are K-well-ordered then Q~ • Q2 is r-well-ordered. 

(2) If a < K, Q~ (i < a )  are K-well-ordered then l'I,<~ Q, is K-well-ordered. 

1.5. CLAIM. (1) A quasi-order Q is K-well-ordered iff it is (K, 1)-I-bqo; 

(2) A quasi-order Q is K-narrow if[ it is (K, 1)-D-bqo. 

(3) If K _-_6 K', a _-> a '  then any (r, a ) -X-bqo  quasi-order is (K', a ' ) -X-bqo.  
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1.6. CLAIM. If Q* is r-well-ordered [r-narrow] then ~<,+(Q) is r-well- 

ordered [r-narrow]. 

1.7. CLAIM. Suppose AI, A2 E ~ (Q). Then AI <= A2 iff one of the following 

holds: 

(i) A1, A2 ff Q, and for every al E A~ there is a2 E A2, such that a~ _-< a2; 

(ii) A2 E Q, A~ ff Q and (Vm E A1) a~ _<- A2 (equivalently, 

[Vq E (Tc(A1) n Q)] q = 32); 

(iii) A~ E Q, A2 E Q, and (:la2 E A2) A~ _-< a2 (equivalently, 

[3q E ( T c ( A 2 ) N Q ) ]  Az<=q); 

(iv) A1, A 2 E Q ,  A , < A 2 .  

PROOF. The proof proceeds by induction on a, following Definition 1.3(4); 

the details are left to the reader. 

The main result of this section is 

1.8. THEOREM. Let X E {I, D}. I f  Q is r -X-bqo,  then so is ~ (Q) (for any a ). 

REMARK. If Q is a (r, y(ot, f l ) )-X-bqo,  then ~ ( Q )  is (r, a)-X-bqo for some 

y(a ,  fl) which can be computed (but we have not computed it). 

To clarify the proof, we proceed first to prove a similar fact about ~(Q).  We 

start with a claim on barriers: 

1.9. CLAIM. (1) Let X E {I, D}, B an X-barrier, and let 

B'  = {T/U* t, : 7 /EB,  u E B ,  r/R~u}. 

Then B'  is a barrier, Dom B ' =  Dom B, and D p ( B ' ) =  < D p ( B ) +  1. 

(2) Let B be an X-barrier, X E {I, D}, C C_ B and 

B b =  C U{n u* u ' n E B  - C ,  u E B, nR~xu}. 

Then B~ is a barrier with domain D o m B  and depth < D p ( B ) +  1. 

PROOF. (1) Let us check the definition of an X-barrier (Definition 0.1(1)): 

(a) We shall show that for every T/E X Seq~ (Dom B), for some n, "q [ n E B'  

(thus establishing Dom B _C Dom B'). 

As B is an X-barrier and r / E  X Se% (Dom B) for some m, 7/[ m E B. Also 

r / - E X S e % ( D o m B )  hence for some k, ( r / - ) [ k E B .  Clearly by 0.1(1)(c), 

O1 [ m)R~(T/-t k) and ~/t max{m, k + 1} = ('q [ m ) U * ( T I - I k ) E B ' .  

(b) No member of B'  is an initial segment of another. 

Suppose o't = r/~ U* t,t, r/, E B, ut E B, rhR~u~, for I = 0, 1 and tr~.~ tr2, and we 
shall get a contradiction. 
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As trl "~ o'~ clearly tr; ,~ o'~. But v~ = oq, so vo<~ v,, but this contradicts 

u0, vl E B. 

(c) Similar to (b). 

(d) B '  has at least two members. Obvious by (a) here. 

Now we check Dom B '  = Dom B. One inclusion follows by (a) here, the other 

by the definition of B'. So Dom B satisfies the requirement in 0.1(1)(d). 

We are left with Dp(B ' )  = < D p ( B )  + 1. To prove this we prove by induction on 

a _-< D p ( B )  that: 

(*) if 7/# ( ) ,  ~ E X Seq<~ (Dom B)  and Dp (7/-, B)  _-< a, then Dp (~/, B')  -< a. 

First let a =0 ,  so as Dp(~/,B)_-<a (by 0.7) for some k, 7 / Ik  E B ,  and 

as Dp(~/- ,B)_-<a for some m, (*I- lm)EB.  So (T / Ik ) -~(~ /  Ira),  and 

( ' q l k ) U * ( ~ - I m )  belongs to B '  and i s -an  initial segment of -q, hence 

Op (7, B')  = 0. 
Second, let a > 0 ,  so if TI^(i)EXSeq<~(DomB) then Dp( (7 /^ ( i ) ) - ,B)<  

D p ( ~ / - , B ) =  < a hence by the induction hypothesis: 

So 

Dp (~/^(i), B')  _-< Dp ((T/^(i))-, B ). 

Dp (7/, B')  = U {Dp (n ^(i), B')  + 1 : 7/^(i) ~ X Seq<,~ (Dom B )} 

=< U {Dp ((~/^(i))-, B ) + 1 : 77 ̂ (i) E X Seq<~ (Dom B)} 

= U {Dp ((r/-)^(i), B ) + 1 : (7/-)^(i) ~ X'Seq<,~ (Dom B)} 

= Dp ('r/ ,B) .  

So we proved (*), so 

Dp (B ') = Op (( ) ,B ' )  = U{Dp(( i ) ,  B ' ) +  1 : i  E D o m B  = Dom B'} 

_-< U { D p ( ( i ) - , B ) +  1 : i e D o m B }  

= U{Dp( (  ) , B ) + I : i E D o m B }  

= D p ( (  ) , B ) +  1 = D p ( B ) +  1. 

(2) Similar proof. 

1.10. THEOREM. Let B be an X-barrier, Q a quasi-order. If Q is B'-X-bqo,  

then ~(Q)  is B-X-bqo .  

PROOF. For proving ~ (Q)  is B - X - b q o  it suffices to prove: 

(*) i fA ,  E~(Q) fo r~ lEBfhen for some~ lEB ,  v E B ,  T1RmxuandA,<=A~. 
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Suppose (*)fails, and A,(~? ~ B )  exemplify this failure. 

For every ~r ~ B' ,  there are rl E B, v E B such that rlR~v and ~r = 7/U* v, 

and the pair (77, v) is unique (for a) .  Choose q, @ A,  such that for no q E A~ 

does q~ < q ; this is possible as not A~ =< A,. We shall prove that (q~ : cr ~ B') 

exemplify O is not B ' -X-bqo,  getting a contradiction to the assumption, thus 

finishing. 

~roRx~r~, and m~, ~rl ~ B' ,  and we have to prove that not q~,,<= q,,,. So suppose i 

For l = 0 , 1  there are r h, v~ ~ B, l such that = r/~ U* = rhRxv~ m v~. Clearly vo 

O'o--< ~rt and ~7~ <--o-1, hence vo, rh are comparable; but both are in B, so by 

Definition 0.1(1)(b), v0 = rh. 

Now q~, @ A,, (by the choice of q~,) hence q~, ~ A.o, but (Vq ~ A.o)(q~o~ q) so 

not q~o_-< q~,, as required. 

Now we return to 

PROOF OF THEOREM 1.8. Let B be a K-X-barrier; we have to prove that 

~ ( Q )  is B-X-bqo.  Suppose A~ @ ~ ( Q )  ('q E B)  exemplify ~ ( Q )  is not 

B-X-bqo.  We shall prove that Q is not K-X-bqo, thus finishing. 

We now define by induction on n, B. and t~E ~ ( Q )  (for every ~ E B . )  as 

follows: 

For n =O, B. = B, and 

t,~ = A,  for every "0 E B,. 

For n + l .  We let B . + ~ = { T q U * v : r ~ B . ,  v E B . ,  ~IR• and t . ] ~ Q } u  

{n : r/@ B.,  t,~ E Q}. 

We shall prove that r/R~m, r / E  B.,  v E B, implies "not  t,~_- < t~". (See Fact A 

below.) So for cr = r / U * v  E B.+I as above choose t"~+l E t,~ such that for no 

t ' ~  t~, t~ +1< t' and if t ~ E Q ,  then not t~+l_ <- - t"~ (possible by 1.7). If r / E  B,,  
el n t ,~EQ then tT, +1= t , .  We let t"O1) = t , .  

Let B* = {7/: for some n, r / ~  B,,  and t,~ E Q}. We shall prove that B* is an 

X-barr ier  with domain D o m B  and if r / C B .  and t,~EQ then ( V m > n )  

07 EBm A t'~=t~). Let t, be t,~; r/,v E B * ,  r/R~xv implies "not  t, _-< t~", thus 

proving Q is not B*-X-bqo ,  hence not K-X-bqo. 

FACT A. B. is an X-barrier,  Dom B. = Dora B;  and not t,~ =< t~ whenever 

"oR~v, ~7 E B , ,  v ~ B . .  

We prove this fact by induction on n ; for n = 0 it is an assumption so suppose 

it holds for n and we shall prove it for n + 1. The first part follows I~y 1.9(2); the 

proof of the second part is similar to that of 1.10 and is left to the reader. 
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FACT B. If ~ E B ,  and tT, EQ,  then 71EB~, t'~=tT, for m>=n. 

We prove this by induction on m => n. The induction step is by the definition of 

Bn+l. 

CONVENTION C. ForvlCB*, t~ is tT ,  foreverynsuchthatTqEB, , tT ,  EQ.  

FACT D. If 7/ E X S e q ~ ( D o m B ) ,  then for some m , v / r n E B * .  

As B is a K-X-barrier, there are ~ ( l < t o )  such that T h ~ B  and ~/~ < 
(r/(l + m)" m < to). 

We now define by induction on k < to, a (k) =< to and ~ ~ (l < a (k)) such that: 

(a) a ( 0 ) i s  defined, a ( k  + l ) = < a ( k ) ,  c~(k)>0 and a ( k  +1) is defined iff 

a ( k ) >  1, 

(b) for every l < a ( k ) ,  r/~'EBk ;r /7 =*/t, 

(c) if 1 + 1 < o~(k) then t~( , ,~)~Q and (rl~')R~,(rtL,), 

(d) if a ( k ) <  to, l + 1  = ~ ( k ) t h e n  t~( , ,k)EQ, 

(e) if a(k  + 1) is defined then tk+'(~,~,+~)E tk(O~), 

(f) r/l'< (r/(/), , ( l  + 1), , ( l  + 2),. . .5. 

This is sufficient, because by (e), as E is well-founded, necessarily for some k, 

a (k  +1) is not defined but oe(k) is defined (remember that by (a) a(0) is 

defined). So by Ca), a(k)  = 1, hence by (d),/k(n,~) ~ Q, but , / ~  B~, so ~9,~c B*. 

As by (f) r/~< 77 we shall finish the proof of Fact D. 

So we have only to carry the induction. For k = 0, a ( k )  is the first l such that 
1>1 ,  ,, o = t (r / ,_,)EQ if there exists such 1, and to otherwise. For k + 1 define 

k~-I  
71 = "q~U* v/~+, for 1 < a ( k ) -  1, and ~q~' = "r/~ for l = ce(k)-  1 (if ce(k)< to) 

and then define a(k  + 1) (if ce(k)> 1) to satisfy (c) and (d). 

FACT E. B*isanX-barr ier ,  D o m B * = D o m B ,  andno t t  <_t,,whenrlR'xv, 
T1EB*, v C B * .  

Just sum up the previous facts; most properties can be reduced to properties of 

B, by Fact B, which then hold by Fact A; the rest follows by Fact D. 

As we have indicated before, we use now Fact E to obtain a contradiction to 
the assumption of Theorem 1.8. 

1.11. THEOREM. The quasi-order Q is K-X-bqo iff for every a 

~,, (Q) is K-X-well-ordered iff for every a < K +, 

~,  (Q) is K-X-well-ordered, iff ~ (Q) is K-X-bqo (for any specific 3/). 

PROOV. The fourth phrase follows from the first by 1.8 and implies it as we 
can embed Q into ~ (Q). 



192 s. SHELAH Isr. J. Math. 

The first phrase implies the second by Theorem 1.8, the second phrase implies 
the third trivially. The third phrase implies the first by the following lemma, thus 

finishing the proof. 

1.12. LEMMA. (1) Suppose Q is not (K, a)-X-bqo,  then ~(-l)+cf (Q) is not K-X- 

well -ordered. 

(2) Suppose 

(A) C C_ X Seq<,o (K ), C closed under initial segments, f : C--* K § is such that 

f(r /)  = I,.J{f(-O ̂ (i)) + 1 : 7/^(i) ~ C} and [D I= K, where D = {i :(i) E C}, and let 

Co=(n E c:f(n)=o~; 
(B) q~ E Q  [or ~1E Co; and rh v E Co, r lRlv  implies not q~ <--_q~ ; 

(C) for every rl E C - Co, i: E C if rlR~xv, l(rl) = l(~,) then r I U* v ~ C; 

(D) there are no r / E  Co, 1, E Co, v "~ 7/ . 

Then 

~t-,)+tt< ,(Q) is not K-X-well-ordered. 

PROOF. (1) We will show that part (1) follows easily from part (2). 

As Q is not (K,a)-X-bqo, there is a K-X-barrier B, of depth ~ a, and q~ 
(-q ~ B) such that -qRlt, implies not q~ <_-- q,. Now let 

C={ 'q  rk  :'O EB,  k -<- l('o)}; 

f : C --~ K § is defined by f(r /)  -- Dp (~/, B ). 

Clearly Co = B and all the assumptions of 1.12(2) hold (part C) by 0.4(1), and 

f(( ) ) = D p ( (  ) , B ) = D p ( B ) < = a .  So by 1.12(2), ~t-t)+[t< >)(Q)is not K-X- 

well-ordered. As f(( ))_<- a, ~-l)+/t< >)(Q)C_ ~-t)+, (Q) hence ~r (Q) is not 
K-X-well-ordered. 

(2) Let g ( r / ) = ( - 1 ) + ( f ( r / ) §  (so / ( r / ) = 0  r g ( r / )=0) .  We define t~E 
~g~(Q)  for r / E  C, by induction on [(rt). If / ( r l ) = 0  then "q E C~,, and let 
t~ = q, E Q = ~o(Q) (by Definition 1.3). If [(-q) > 0, let t, = {t~^<,>: r/^(i) E C}. 

Note that r l ^ ( i ) E C  implies / (~ )> f (7 /^ ( i ) )  which implies t,~<,> is already 

defined and belongs to ~,c,,^<,,(Q)C ~ ~)+:<~>(Q). Hence t~ C_ ~-~)+:c,~)(Q), so 

g((i)) = (-1)+ (f((i))+ l)< (- l)+f(( )) hence t<,>E 

>)(Q). As I D I = K, D C K, it suffices to prove that: 

(*) i,j  E D, iR~j implies not t<,><-_- t<i>. 

So suppose i,j  form a counterexample to (*). We now define by induction on l, 
ordinals i(l), j ( l )  such that: 

t~ ~ ~ > ( Q ) .  
Now for i E D ,  

~g~<,>)(Q) c_ ~(-1)+[(( 
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(a) i(0) = i, j (0)  = j, 

(b) r/, = ( i ( 0 ) , . . . ,  i(l)) E C, vl = ( j ( 0 ) , . . . , j ( l ) )  E C, 

(c) i(l + 1) is defined if[ j r ( , / , )> 0, and then it is j(l), 
(d) t~, <-_ t,,. 

For  I = 0, use (a). If we have defined i ( 0 ) , j ( 0 ) , - . . ,  i ( l ) , j ( l )and j r ( rh)>  0, then 

let i(l + 1 ) - - j ( l ) .  Now ~/l+t E C by assumption (C) since i(0)R~ 

By the definition of t,,, t,,§ E t~,. Hence  by 1.7 for some t E t~,, t~,, _<-t or 

t~, E Q. In the first case by the definit ion of t~,, for  some jr+l, ~(jt+z) E C and 

t = t~,§ So we carry the induction.  In the second case, necessarily v~ E Co (by 

t~,'s definition; recall that we treat  the members  of Q as urelements) .  

By induction on jr07) one can easily show that for each r / E  C there  is 

r/* E Co, r/_<-rl *. Thus,  let r/* E Co, r/~§ _-< r/*. Then  ~,1 = (r/~+~)-_-< (~/*) -, so by 

assumption (D), ~,~ = (7/*)-, hence ~7~+~ = ~7 * E Co. 

By 1.7, t,,§ < t,,, and clearly r/~+,R~,vt, contradict ing assumption (B); so the 

second case never  occurs, and we can carry the induction.  

As rh'~ 7/t+z, c l ea r ly / ( r / t )  > [(*/t+l), hence for some m,[(71~) = 0; so i(m + 1) is 

not  defined. So t~, ~ Q, ~/,, E Co. Now we can define by induct ion on l >= m, ](l), 

such that  u~ = (/(0), �9 �9 -, j(1)) E C, / ( l  + 1) is defined if[ jr(~,~) > 0, and t~, =< t,, (for 

l = m, j( l)  is already defined). Again we can carry the induction and for some n, 

u, is defined and is in Co. So t,. E Q, t , ,  =< t,., 7/,~R~v, and again we get a 

contradict ion to assumption (B). 

w Existence theorem and a stronger notion suitable for powers 

The interest  in the theorems  of w is not clear till we find non-trivial examples  

of K-X-bqo  (in addit ion to the ~o-I-bqo with which Nash-Williams dealt). It is 

also not clear what  the addit ional  case X = D gives us. Ano the r  fault is that  we 

do not have any parallel of the fact "if  Q is bqo, then so is Q2 = Q x Q" .  This 

section suggests remedies .  

2.1. DEFINITION. (1) A ~ (/x)~ <~ if for  every  funct ion F f rom I Seq<.  (A) to K, 

there  is a set A _C A of cardinal i ty /z  such that  for  every  n < to, F r ( I  Seq.  (A) )  is 

constant  (this relat ion has obvious monotonic i ty  propert ies) .  We define A ~ (/z)~" 

similarly. 

(2) We call A a Ramsey cardinal itt A --~ (A).<~ for every  r < A. 

(3) We call A a weakly compact  cardinal  if[ A--~ (A)22 and A > no. 

2.2. THEOREM. (1) Every Ramsey cardinal is weakly compact, and every 

weakly compact is strongly inaccessible, and A is a Ramsey cardinal iff A ---) (A)2 <", 

and A > Mo is weakly compact iff A ~ (A)~ [or every n < to, tz < A. 
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(2) I f  K is Ramsey, B a K-I-barrier, then for some A C_ D o m B ,  IAI  = r and 

B f3 (I  Seq<~ (A))  = I Seq,  ( A )  for some n. For weakly compact cardinals this 

holds for every I-barrier of depth < to. 

PROOF. For  part  (1) see [5], and part  (2) is trivial. 

REMARK. See 4.7. 

2.3. DEFINmON. (1) r---~(to)~ ~ means that for  every  funct ion F from 

I S e q < ~ ( r )  to X, there  are a ( 0 ) <  a ( 1 ) < . - .  < a ( n ) < . . -  such that for every  

n, F ( ( a ( 0 ) , . . . , a ( n - 1 ) ) ) = F ( ( a ( 1 ) , . - . , a ( n ) ) ) .  Notice that if we replace 

I Seq<~ ( r )  by D Seq<~ ( r )  we obtain an equivalent  definition. 

(2) We call r beautiful if r --~ ( t o ) ~  for every  X < r or r = No. We call r a 

successor beautiful  cardinal,  if it is the first beautiful  cardinal > X, for some X ; 

limit otherwise (see 2.4(6)). 

By Silver [25] 

2.4. THEOREM. (1) If r is a beautiful cardinal, then also in the universe L 

( = the class of constructible sets, introduced by Godel) r is beautiful. 

(2) If  r is the first cardinal such that K -~ (to ) ~  then r is beautiful (hence is the 

first beautiful cardinal > X), and is strongly inaccessible, but is not weakly 

compact. 

(3) The class of beautiful cardinals is closed, and every member is strong limit, 

and moreover is limit of weakly compact cardinals, provided it is uncountable. 

(4) r -~ (to ) ~  iff every model M with universe r and X relations and functions 

(finitary, of course) has a submodel N and a non-trivial monomorphism f : N ~ N 

(i.e., f is not the identity). Notice that by using Skolem functions, we can assume 

that N is an elementary submodel of M, and f is elementary embedding. 

(5) Suppose r is beautiful > no, M a model with universe r and < r relations 

and functions. Then for any a < r there are a ( n ) <  r (for n < to) such that 

(a) a < a ( 0 ) < a ( 1 ) < . . . < a ( n ) < . . . ,  

(b) for every n, ( a ( 0 ) , . . . ,  a (n)),  ( a ( 1 ) , . . . ,  a(n + 1)) realizes the same type in 

M over a (0), i.e., for every formula ~ (Xo," ", x,, yo, '"  ", yk-1) in the language of M, 

and "to," �9 ", 3'H < a (0), 

M ~ ~ [ a  (0), �9 �9 a ( n ) ,  To, �9 �9 ~/k_l ] i f  

M ~ ~ [a (1), �9 �9 a (n + 1), 3'o," �9 ", ~/k-1]. 

(6) In (5), if r is a successor beautiful, C C r is closed unbounded, then we can 

choose the a (n )' s in C. A r with this property is called strongly beautiful ; singular 
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cardinals are not strongly beautiful, but if K is regular and {A < K : A strongly 

beautiful} is stationary, then K is strongly beautiful. 

2.5. THEOREM. Suppose Q is not x-narrow (X >--No) and K--~ (to)~ ~ fails. 
Then for some a, ~ (Q) is not K-narrow. 

REMARK. Why have we not done it this time for well-ordering as well? 

Because it fails, see 3.1. 

PROOF. Let F : D Seq<~ ( r ) ~  X exemplify the failure of r --~ (w)~.  By easy 

changes (which retain its being a counterexample) we can assume: 

(a) From F(r/) we can compute l(r/) and F ( ( , l ( k ) , . . . , r l ( m - 1 ) )  ), 

F((n(k) ,  ~7(m))) for k _-< m _--< l(r/). 

(b) From F((i,j)) we can compute the truth value of i <] ,  j < i. 

We define by induction on n a set C" _C D Seq, (r):  

C " =  D Seqo(r), C 1 = D Seq,(r), 

C " + ' = { r / E D S e q . + , ( r ) : r / t n ~ C " , r /  E C "  a n d F ( n r n )  = F ( n  )}. 

Let C = I..), C". 

It is easy to prove that each T/E C is monotonic (increasing or decreasing) (by 

induction on n, using assumption (b)). It is also clear that C is closed under initial 

segments, and also r /E  C ~ r/ E C. 

A little less trivial fact on C is that it contains no set of the form {~7 r I : l < w} 

where r /C  D Seq~(K). If 7/ is a counterexample, it is monotonic (by what was 

said above), but as it is infinite, it is necessarily increasing. Checking the 

definition of C", we see that r/(0)< ~ 1 ( 1 ) < ' "  contradicts the choice of F (as 

exemplifying that r ~ (~o)~ ~ fails). Hence there is no such 7/. 

Let B = {'0 E D Seq<~ ( r ) :  r/r ( l ( r / ) -  1) E C but r /~  C}. Let {t~ : i < X} be X 

pairwise incomparable elements of Q, and define for T/E B, q, = tF~,~c,,)-~). We 

want to apply Lemma 1.12(1). By the conclusion of 1.12(1), for some a, ~ (Q) is 

not K-D-well-ordered, i.e. not K-narrow, just what we need. So we have to 

check the assumptions of 1.12(1). We will show that B is a K-D-barrier and for 

no n, ~, E B, r/R~,, q, < q~. 

FACT. Assume 7/, ~, E B, r/R~,. We have to show that not q, =< q.. 

Suppose q, =< q~, so tF~,r<~<~)-~)----tv~r,~.~-~)), so by the choice of the t~'s (as 

pairwise incomparable) necessarily F ( r / t  (1(7/)- 1)) = F(~, I ( l(~,)-  1)). So by 

assumption (a) in the beginning of the proof, l('0) = t(,,), and let t('q) = n + 1. So 

r l ln ,  v l n ~ C " ,  F ( r l l n ) = F ( ~ , I ~ q )  so by the definition of C "+~, r / =  

07 I n)^(v(n - 1)) @ C "+~. But r / E  C "+~ C_ C contradicts 77 E B, so we finish. 
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FACT. B is a K-D-barrier. 

Notice that r / E B ,  implies /(7/)_-> 2. 

By the definition of B, clearly for no 7, u E B, ~ u .  Also for every 

T/~ D Seq,o (K) we proved above that for some,k < to, -q r k ~  C; if k is minimal, 

clearly ~ r k ~ B. Now we have to prove that ~/E B, u ~  77- implies u ~  B, but if 

~ = ( a 0 , ' " , a k - ~ ) ,  then ( a o , " ' , t ~ k - 2 ) ~ C  (by the definition of B)  hence 

(a~,. . . ,ak_2) E C .  (As mentioned above u E C ~  u - E C . )  So u ~ -  means 

u<(a~, ''',a~-2) implies u E C implies u ~ B .  

Trivially Dom B = K and B has at least two members, so by definition B is a 

K-D-barrier. 

2.6. CONCLUSION. For any quasi-order Q, the first infinite cardinal K for 

which Q is K-D-bqo is beautiful. 

REMARK. We could have proved directly K is strongly inaccessible. 

w <to  ~S PROOF. If K-~(to)x ,h' < K , a n d  K>no ,  h,_->N0, then byK definition Q is 

not x -D-bqo ,  hence by 1.11 for some a, ~ ,  (Q) is not h,-D-well-ordered (--- not 

x-narrow), hence by 2.5 for some/3, ~ ( ~  (Q)) is not K marrow ( -- not K-D- 

well-ordered). But by 1.8, as Q is K-D-bqo, ~ ( ~  (Q)) is K-D-bqo,  contradic- 

tion. 

2.7. DEFINITION. Let X E {I, D}, h _-> 1. 

(1) The quasi-order Q is [K, a ; h  ]-X-bqo if for every K-X-barrier of depth 
~ < a , B  and function F : B ~ A  and q, E Q  f o r ' q E B ,  there a re~EB,  v E B  
such that F ( ~ ) =  F(v),  "qRxu~ and q, =< q,. 

(2) Q is [K;A]-X-bqo iff Q is [K ,a ;h ] -X-bqo  for every a < h + .  Q is 

[K, a ]-X-bqo iff Q is [K, a ; h ]-X-bqo for every h < K, and Q is [K ]-X-bqo iff Q is 

[K,a ;A]-X-bqo  for every a < K+, A < K. 

(3) In all the above definitions we omit the letter X (or I or D )  if the two 

versions with I and with D are equivalent. 

2.8. CLAIM. (1) In all versions of bqo, the I version implies the D version. 

(2) Suppose K <_- K', a _->a', h _-> A', then: 

(a) Q is (K,a)-X-bqo implies Q is (K' ,a ' ) -X-bqo.  

(b) Q is K-X-bqo implies Q is K'-X-bqo. 

(c) Q is [K, a ; h  ]-X-bqo implies Q is [K', a ' ;  h ' ]-X-bqo.  

(d) Q is [K;h] -X-bqo implies Q is [K' ;h ' ]-X-bqo.  

(3) If Q is [K, a ; h ]-X-bqo (h > 0, of course) then Q is (K, a ) -X-bqo ;  and if Q 
is [K;h] -X-bqo then Q is K-X-bqo. 

(4) If h -> K then no Q is [K ,a ;h ] -X-bqo .  
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PROOF. Trivial. 

2.9. CLAIM. (]) Q is [K,a ;1] -X-bqo iff Q is (K,a)-X-bqo; and if A <CfK 

then Q is [K, 1;A]-X-bqo iff Q is (K, 1)-X-bqo; and if CfK<A < K  then Q is 

[K, 1; A]-X-bqo iff Q is (K', 1)-X-bqo for some K '<  K. 

(2) Q is [No, a ]-I-bqo iff Q is (No, a ) - I -bqo.  

(3) If K is weakly compact, then Q is (K,n)-I-bqo iff Q is ISeq,(K)-I-bqo. 
Also Q is [K, n ; A ]-I-bqo (3. < K) iff Q is Jr, n]-I-bqo;  and if Q, (i < )t) is [r, n]- 

I-bqo (A < K) then l-I, Q, is [K, n]-I-bqo.  

(4) If K is Ramsey then : Q is [K]-I-bqo iff Q is (K, n)-I-bqo for every n, also if 

A < K, Qi is K-I-bqo then [Ii<~ Q~ is K-I-bqo. 

(5) In Definition 2.7(1) for infinite A, we can assume w.l.o.g, that from F(r/)  

we can compute l(r/), the truth value of r / ( n ) <  ~/(k) for n,k < 1(7/) and the 

value F((rl(lo),..-, r/(lk))) for any k < l(r/), 10< 10 / ) , ' '  ", l~ < 10/), such that 

01(l,,),'",~q(lk))EB. Instead of Range(F)_CA we can demand that 

I Range(F)l  --< A. 

PROOF. (1) By the definitions. 

(2) By Nash-Williams [19]. 

(3), (4) Easy (see 2.2). 

(5) Trivial. 

2.10. THEOREM. If r is beautiful, HQII< K then Q is [ r ] - I -bqo.  (Hence, by 
2.8(1), Q is also [K]-D-bqo.) 

PROOF. For the case K = ~t0 see [19]. So we assume K > ~o. 

Let B be a r - / -barr ier ,  q, E Q for 7/E B and F : B ---> X, X < K. We define a 
model M: its universe is K, and its relations: 

R~. j={~lEB: l (~ l )=n ,q~=q,F(T1)=j}  f o r q E Q ,  J<X,  n < w .  

So by 2.4(5) there is 7/E I Seq, (K) such that for each n, the sequences 77 I n and 

( r / )  [ n realize in M the same type. As B is an / -bar r ie r  for some n, 7/I n E B. 
For some q,j M~R~j[~lrn] ,  hence M~R~,j[(~I ) In ] :  thus ( r / ) I n E B ,  

F((r/ ) I n) = F(~  I n) and qt, ~r, = q~r,. So ~/I n, (r/~) I n are as required from ~/, 
v in the definition of [K]-I-bqo. 

2.11. THEOREM. (1) For any X E { L D } ,  Q, K, ct and )t, 1 < A < K ,  the 
following conditions are equivalent (where ,~ = ,~ (0)A (1)): 

(a) Q is [K, a ; )t ]-X-bqo. 

(b) Qx(A,  = )  is (K,a)-X-bqo (note that (~, = )  is a quasi-order). 
(c) Q • (A (0), = ) is [K, a ;A (1)]-X-bqo. 
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(2) I f  Q is [K,a + 1; (A(0)+ 1)A (1)]-X-bqo then Q*'")(this is a power of Q) is 

[K, a ; A (1)]-X-bqo. 

(3) For X, Q, K, a and A as above, the following are equivalent, with two possible 

exceptions, (i) (Vq, q2 E O)(q ,  <= q2 v q2 <~ q~) and A = A (0) = 2, (ii) (Yq~, q2 E Q)  

q~ =< q2, (iii) A (0) < 2 or A (0) = 2. Q has no three incomparable members : 

(a) O is [K ; h ]-X-bqo. 

(b) Q x (A, = ) is K-X-bqo. 

(c) Q x (A (0) + 1, = ) is [K ; h (1)]-X-bqo. 

(d) Q~(")is [K;),(1)]-X-bqo. 

(4) For infinite A, Q is [K ;A ]-X-bqo iff Q* is [K ;A ]-X-bqo. 

REMARK. For A = 1, the theorem holds trivially by 2.9(1). 

s  (1) Clearly (b) is a particular case of (c) (for A (1) -- 1, see 2.9(1)). So it 

suffices to prove (a) ~ (c),0,),,(~) ~ (a) (for any A (0), A (1)). 

(a) f f  (c),((,).~(,) 

So we assume Q is [K ,a ;A] -X-bqo  and B is a K-X-barrier  of depth -< a, 

t, = (q,, j , )  C Q x (h (0), = ) and F : B -~ h (1). We have to prove that for some 

n , ~ , E B ,  ~Rxv; F(n  )=F(~,)andt,=t~.Letp< "A(0)xA(I) - -*A b e o n e t o o n e  

and onto A (it exists as A (0)A (I) = 3. ), and p~ : .~ ~ A (0), p2 : A ~ A (1) be such 

that for every i < A ,  i=p(p~(i) ,p2(i)) .  We define a function F':B---~A by 

F ' ( r l )  = p(] , ,  F(rt))  hence: 

(*) F ' (r / )  = F'(~,) iff F ( r / ) =  F(v) ,  j ,= j~ .  

As  Q is [K, a ; A ]-X-bqo, B a K-X-barrier  of depth =< a, q, C Q for 7 /E  B, and 

F':  B ~ A, clearly for some r~ E B, ~ E B, rlRxu; F'(~q) = F' (u)  and q, = < q,. 

Now as F ' ( r l ) =  F ' (v)  necessarily F ( r / ) = F ( v )  and also j,  =j~, hence t, = 

(q~,j~)<=(qv,j,)=t~. So we find rl E B ,  v E B  such that r/R~v, t~ =<t., F(r t )  = 

F(u),  as required. 

(c)~(o),~(~) ~ (a) 

So we assume Q • (A (0), = ) is [K, a ; ,~ (1)]-X-bqo, B is a x-X-barr ie r  of depth 

_--< a and q~ E Q for 71 E B, F : B ~ A. We have to prove that for some r/, v E/3,  

r~R~,v, F(r / )  = F 0 ,  ) and q, _-< q~. 

We use p, p~, p2 defined above. Let t~ = (q~,p~(F(~q))~Qx(A(O),  = ) and 

F ' : B ~ A ( 1 )  be F'(rl)=p2(F(rl)) .  So as Q•  = ) i s  [K,,~;A(1)]-X-bqo 

there are r/, v E B such that  rtR~v, t, =< t~ and F ' ( r t )  = F'(u).  Hence q, =< qv, 

p~(F(n)) = p~(F(v)) and p2(F01))= p2(F(p)). So F ( r / ) =  F 0 , )  and we finish. 

(2) Let  B be a ~-X-barr ier  of depth =<a, F :B-- -~A(1)  and ~ = 



Vol. 42, 1982 BETTER QUASI-ORDERS 199 

(q % : i < A (0)) E Q~ (''~ (so q ~ E O )  for r I E B. We suppose for no "q, v E B does 

~RZx u, ~1~ <= gl,, F(71) = F(v). Let  B '  be as in 1.9, and we shah define t,, E Q, 

F ' ( o - ) <  ,k = (A(0)+ 1)A(1) for every  o -E  B ' .  So let o -E  B ' .  Then  there  are 

unique rl, v E B, cr = ~ U* v, rt R~v. If F ( r l )  / F(v)  we let i(cr) = A (0), t~ = q~"), 
F'(o') = p(i(cr), F(~)). But if F ( ~ )  = F(v)  then by an assumption above  not  

4, ~ ~v, hence by the definit ion of the order  of Q,(O), for  some i ( ~ ) <  A(0), not 

q%<=qi. In this case we let t, = q~"), F'(o')=p(i(cr),F(~t)). 
So we have a K-X-bar r ie r  B '  of depth  _-< a + 1 (by 1.9) and t,. E O for o, E B '  

a n d F ' : B ' ~ A .  So a s Q i s [ K , a + l ; A ] - X - b q o t h e r e a r e ( y , , c r 2 E B ' s u c h t h a t  

or,R~co-2, t,q--- t~ and F'(o-,) = F'(o-2). 

Let  er~ = -qj U* v~, "q~ E B, v~ E B, r~,RJxvt for l = 1,2. As F'(~q) = F'(cr2) and as 

we know that p2(F'(o ' t ) )= F( rh)  clearly F ( ~ ) =  F(rl2). It is also clear that 

necessarily ~2 = v~, so F(rl~) = F(m). So i = i(oq) is < A(0) and not  q~,, _-< qi.,. On 

the o ther  hand F'(Crl)= F'(cr2)implies i = i (cr , )=  p l (F ' (c r , ) )=  p,(F'(cr2))= i(cr2) 
hence q ~,, = t~, =< t,~ = q ~, contradict ion.  

(3) By the first part  (a) r (b) r (c), and by the second part  (a) ~ (d). Hence  

it suffices to prove  not  (b) implies not  (d), and for simplicity assume A (0) + 1 = A. 

Let  B be a K-X-barr ier ,  (q~, a , )  E Q • (A, = ), Tt ~ B, exemplify not  (b), and it 

suffices to prove Q* is not B - X - b q o .  

Case (a). In Q there  are two incomparable  e lements  qO, q, ,  )t -> 4. Then  let 

v~ E*(~176 (a  < A )  be distinct ( they exist as 2~-2>A for  h > 4 )  and define 

2 ~-2 __> h for h _-> 4, 4~ = (q ~, : i < h (0)) E Q'C~ q o = q, ,  q ~, = q~ where  1 = ~,~, (i)  

for  0 < i < A (0). It is easy to check that  (4,  : * / E  B)  exemplify not  (d). 

Case (b). In Q there  are qOg~q,, 2~,-~)/~> A (i.e. Z > 10). Find u~ E*(~176 

(a < A) such that  a #  f3 ---~(Bi)(~,~(i) = 0 ^ uo(i)  = 1), and proceed  as above.  

Case (c). In Q there  is a strictly decreasing sequence  of length A, 10 > A > 3 

(q~ ~ Q (i < A), q ~  q~ for  i < j) .  Le t  ~,, (1) = a,  ,,~ (2) = A - 1 - a,  and p roceed  

as before.  

Case (d). In Q there  are three  incomparable  members ,  q o, q~, q2, and )t = 3. 

We define v~ (1) = q ~ for  a < A and proceed  as before .  

Le t  us show that  e i ther  one  of the cases apply or  one  of the except ions  apply. 

We can assume that  except ion  (iii) does not  apply, hence by Case (d) we can 

assume A _-> 4. 

If (a) is not  the case, we can assume that  Q is a linear o rde r  (by considering Q 

modulo  the relat ion q~ < q2 ^ q2 < q~). If (b) is not  the case and we are not  in 

except ion (ii), we can assume fur ther  that  A < 10, and since we are not  in 

except ion  (i), A > 3. Thus,  if (c) is not  the case, we can assume that  Q is a finite 

ordinal  and A < 10, but  then  (b) holds by 2.10. 
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(4) Easy, by part (3). 

2.11 A. REMARK. From the proof it is clear that, e.g., for 3 =< h < co, Q~ is 

K-X-bqo itt Q~ is K-X-bqo. 

2.12. THEOREM. (1) Suppose a~, b~ E Q for every i < K and 

(i) f o r i < j < K ,  a,;Naj, b,~b~; 

(ii) for i, j < K, a, and bj are incomparable. 

Then ~(Q)  is not K-narrow. 

(2) I f  for some a, ~ (Q) contains a,, b, as above then ~§ is not K-narrow 

hence Q is not K-D-bqo. 

PROOF. (1) Let t~ = {a,, b~}E 3~(Q) for i < K. It is easy to check that for 

i # j < K ,  not t~<=b. 

(2) Easy. 

2.13. THEOREM. (1) I f  Q is [K,a + l ; h  +4]-D-bqo then Q is [K ,a ;h ] - I -  

bqo, provided that a >= K. 

(2) I f  h is infinite, Q is [K ; h ]-D-bqo iff Q is [K ; h ]-I-bqo (so we can omit I 

and D ). 

PROOF. (1) Let B'  be a K-I-barrier of depth < a, F ' : B ' ~  h and q ' E  Q, 

r / E  B' ;  we want to show that for some r/, v E B', r/R~v, F ' ( r / )=  F ' (v)  and 

q'<=q'~. Define B = { r / ^ ( i ) : r / E B  ', r /^(i)EISeq<o,(K)},  and for r / ^ ( i ) ~ B  

define F(r /^ ( i ) )=F ' ( r / )  and q,^ ,>=q' .  Then B is a K-I-barrier of depth 

=< a + 1, and it suffices to show that for some rl, v ~ B, r/Rlv, F(r/) = F(u)  and 

q~ -< q,. For B we can apply 0.8 to obtain the K-D-barrier B* = B t_J B o. Define 

F* : B * --* A + 4 as follows (using the notations of 0.9): 

I 
F(r/)  if r / E B ,  

A if r / E B b ,  for some even n >3 ,  

F * ( r l ) =  A + I  if r / E B b ,  for some odd n->3,  

A + 2  if 7/ E B ~d for some even n > 3 ,  

A + 3  if r / E B  ~ ,.d for some odd n _-> 3. 

Define q* = q~, for r / E  B, and q* = some arbitrary element of Q, for r / E  B o. 

Since by 0.10, Dp(B*)_- < a + 1, we can find r/, v ~ B * ,  r/R~,v, F*( r / )=  F*(v)  

and q * _-< q *. Since r/Rgv and F*(r/) = F*(v),  by 0.9 we must have r/, v E B. By 

our definitions r/RIv, F(r/)  = F(v )  and q, _-< q~, so we have finished. 

(2) One direction follows by part (1), the other follows by 2.8 (1). 

2.14. CONCLUSION. Suppose A _--> N0, Q a quasi-order. The first cardinal K for 
which Q is [K;A ]-bqo is beautiful. 
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2.15. THEOREM. Theorem 1.8, which we proved for K-X-bqo, holds for 

[K;A]-X-bqo (0<  A < r )  and [K]-X-bqo as well, with ~ replaced by ~ .  

PROOF. We are given in addition to A ,  ~ ~ ] ( Q ) ( , / E  B)  also F :  B --* A. We 

define by induction on n, B., F, : B, --~ A and t,] (for 77 E B,).  

For n = 0 : B 0  = B, F,~= F, t~ = A,  (for r / E  Bo). 

For n + l: We let 

1 B.+, = {r/U* v : "q @ B., v E B., r/Rxv, tT, E Q} U {r/ : r/ @ B. and t,qE Q}. 

F~+,(~ U* v) = F~ (T/) for r /U* v E B.+,, ' rIRxv, 

F.+~(~I)=F.(71) for r / E  B., t.~ E Q, 

/ t.~ if o" = r/ E B., t,~ E Q; 

any member of if o- = ~ U* u @ B.+I, 

: T/Rx., F. (~/) # t ~ + j  Tc(t",)EQ ~ F. (v); 
any t E t.~, such that if o" = r/U* v E B.+I, r/R~xv, 

O/sEt,",) (not t<=s) F. OT)=F.(v) .  

and if t" .EQ, t ~  t~ 

At last 

B * = {77 : for some n, 7 /E B., t,~ E Q}. 

In the rest of the proof, we have to introduce only minor changes. 

w E x a m p l e s  

3.1. THEOREM. Suppose Q is a linear order. 

(1) If in Q there is no descending sequence of length K, then Q is K-I-bqo. 

(2) If a is an ordinal, then ~ (Q) has no two incomparable elements. 

(3) Q has no descending sequence of length K iff Q is r-well-ordered. 

(4) Q is I, lo-D-bqo. 

REMARK. We can replace here r by any limit ordinal. 

PROOF. (1) Suppose B is a K-l-barrier, q, E Q for 7 /E  B, and 7/, v E B, 

r/R~v implies not q~ _-< q~. We shall find a descending sequence of members of Q 

of length K, thus finishing. W.l.o.g. Dom B = K. 

We now define by induction on a < K a sequence 7/~ E B such that 

(i) for /3  < a ,  k < l(r/~), ~ ( k ) <  ~/~(0), 

(ii) r/~ (1) is < a + to. 



202 s. SHELAH Isr. J. Math. 

For  any a, let 3,, = U { r / ~ ( / ) +  1 :/3 < a ,  / < / ( r / s )} .  It is easy to check that 

~,~ < a  +oJ. Now (T~,y,  + l , y ,  + 2 , . . . ) E I S e q o ( K ) ,  hence some initial seg- 

ment  r/~ = (y~ + l : l < l (r / , ) )  E B. Clearly r/~ is as required.  

We shall now prove that fo r /3  < a, q~o > q~v, thus trivially finishing. Now we 

apply (for specific/3 < a )  Claim 0.5. By it, there  are k < o~, o-,,. �9 o-k such that 

~r~ E B, ~r~, = r/s ' crk = r/a, cr~R]~rt§ For each l, by the choice of the q~'s, clearly 

not  q,, <= q,.,+,. But Q is a linear order ,  hence q,,, > q ..... . Thus  

q~ = q,,,, > q~, > " " " > q,,k = q,o, 

so q,~ > q, . ,  as required.  

(2) By induction on a we can prove that for  every  q " E ~ ( Q )  there is 

q ' E ~ , ( Q )  such that (Vq, q ' ) q E q ' ^ q ' _ - < q ^ q @ Q ^ q ' E Q @ q ' E q ' .  

(3) By definition. 

(4) By (2) and 1.11. 

3.2. CONCLUSION. (1) For  every  K, there  is a quasi-order  Q.  which is K ' - l -bqo  

iff K'~K.  
(2) For  any ordinal c~ > 0 there  is a linear order  Q . ,  satisfying: there  is a 

descending sequence of length /3 from Q~ iff/3 < a. 

REMARK. Compare  this with 2.5, 2.6. 

PROOF. (1) By 3.1 and part  (2). 

(2) By induction on a. If there  are /3, y < a  such that a = / 3 + y ,  let 

Q ,  = Q~ + / 3 '  (/3" denotes  the inverse order) .  Otherwise,  let Q,  = E ~ , / 3 " .  

3.3. CLAIM. If Q = Ui< ,  Qj, A < K, K > N(, beautiful,  each Qi is linear N,- 

wel l -ordered,  then Q is [K]- l -bqo.  

PROOF. Similar to 2.10, 

REMARK. Q -- U Qj implies Q, = Q [IQJl but for qj, E Qj,, j, ~ j~, qj~ E Qj~, we 

do not restrict the order  be tween qj,, qj~. 

3.4. CLMM. Suppose K is beautiful and singular. Then  there  is a quasi-order  

Q which is fo~ X = I ,D ,  K-X-bqo,  but not [K, 1; cf n ] -X-bqo ,  and not K ' -X-bqo  

for K ' <  K (not even K'-X-wel l -ordered) .  

PROOF. Let  K =Y~<~K~, /~ = c f K < K ~ < K ,  O = U ~ , Q ~ ,  the O, 's  pairwise 

disjoint, [0~ [ = K~, and for a, b E O 

a<=b iff a = b  or a E O ~ ,  b E Q j ,  i < j .  

Let  Q = ( Q ,  _-<). 
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FACT A. Q is not [r,  1, cf g]-X-bqo.  

Let  B = { ( i ) : i < r } ,  F(( i))=min{a:i<r~},  q<,>~QF<<,>), and i ~ j ~  
q<~> ~ q<j>. 

FACT B. Q is not u ' -X-bqo nor K'-X-well-ordered for g ' <  g. 

For each u ' <  u for some a < be, u ' <  g~, and use Q~. 

FACT C. Q is g-X-bqo.  

Let B be a u-X-barrier ,  Dora B = u ; q~ E Q for ~ E B be a counterexample. 

Now the relation R(x, y)=df "not  x < y "  is transitive. Hence, as in the proof of 

3.1(1), we can prove that if T/(I) < ~,(n) for all l <  I(+/), n < l(v)  and ~/, v E B 

then "not  q~ < q~". For some m, 7/o = (0, 1,2, .  �9 m - 1) E B, and let q~ E Q~,, 

so v E B ,  v ( 0 ) > m  implies "not  q~<q~". Hence q~E{,.J~_<~,Q~. B'= 
B [ ( D o m B - m )  is a K-X-barrier, and I{,.)~=~oQ~ [<  K, so by 2.10 for some 

~, v ~ B '  _C B, ~ R~:v, q~ < q~, contradiction. 

3.5. CLAIM. If U > ~o is not weakly compact (e.g., any successor beautiful 

cardinal is like that by 2.4 (2)) then some linear order I is g - I -bqo but not [g ;:2]- 

I-bqo (nor [g;2]-D-bqo). 

PROOF. As K is not weakly compact, there is a linear order  I with I II = g but 

no descending nor ascending sequence of length g. (See e.g. [6].) We can assume 

that there is f :I-->I, which is an anti-isomorphism (i.e., x < y <==> f (x )>f(y) ;  
we can assume this as 1 + I* satisfies this). 

In ~ ( I  • {2. = }), there are g pairwise incomparable elements: {t~ : x E I} 

where t~ = {(x, 0), (f(x), 1)}. 

REMARK. Clearly 12 is not r - ~ - b q o .  

w More information 

4.1. DEFINITION. ~<, (Q)  = (~<K(Q), <,)  is defined similarly to ~<~(Q) (see 

1.3) but the mappings have to be one-to-one. 

4.2. THEOREM. Suppose u is weakly compact and Q is K-well-ordered. Then 
~<~ (Q) is K-well-ordered. 

REMARK. Note that if V --- L, g is regular not weakly compact, then Jensen 

proved that there is a g-Suslin tree T (see [1]). Now it is well-known that even 

~<3(T) is not g-well-ordered, whereas T is. 
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PROOF. Suppose Si E ~ < , ( Q )  (i < K) from a counterexample .  For  every  

i < j ,  as not Si<_-S s, there  is t~.sES~, such that for  no s E S s ,  t~.j<=s. Let  

R = {(a,/3, 3/): a < /3  < 3 /<  K, t~.0 = to,v}, SO as K is weakly compact  K --~ (K) 3 SO 

there  is A C_ r,  I A I -- K, such that all increasing triples f rom A are in R, or all of 

them are not in R. The  second case is impossible, as then for a E A, 

{t~,0 : a < /3  E A } is a set of K distinct members  of So, but  S~ ~ ~ < ,  (Q) hence 

t S~ I<K.  So for every  a @ A  there  is t ~ S ~  such that a < / 3 E A  implies 

t~ = t~, 0. Let  a </3,  a E A, /3  ~ A, so t~ = t~. o E S~, t o ~ So, hence by the choice 

of t~,o not  t~ =< t o. So {t~ : a E A } exemplifies that Q is not K-well-ordered.  

4.3. DEFIHZ'nON. (1) We call a cardinal K subtle if for  any sequence  

(S, : a < K), S~ C_ a, and closed unbounded  subset C of K, there  are a < /3  in C 

such that S, = So 71 a. 

(2) We call A C_ K subtle if we could have chosen a,/3 in A 71 C. 

(3) We call K almost ineffable if every  set A _C K which is in the weakly 

compact  filter D~ c is subtle, where  

D w~= { K -  S: for  some A C H(K), and 7r~ sentence r  r 

but for  no ct E S ,  ( H ( a ) , E , A  71 H ( a ) ) ~  ~b}. 

For  the following see Kunen  and Jensen [9]. 

4.4. LEMMA. (1) A subtle cardinal is strongly inaccessible and even the limit of 

weakly compact cardinals. 
(2) Any  successor beautiful cardinal is subtle. 

(3) A cardinal K is weakly compact iff (~ E D'~ ~ iff D'~ ~ is a normal filter. 
(4) Any  almost ineffable cardinal is weakly compact and subtle, but bigger than 

the first cardinal which is weakly compact and subtle. 
(5) Any  ineffable cardinal is the limit of almost ineffable cardinals. 

(6) A cardinal K is almost ineffable iff for every two-place function on K 
satisfying f ( i , j ) < i  for 0 < i < j ,  there are a and A C t ,  I A I = K ,  s.t. 

[i, j E A  ^ i  <j]  ~ f ( i , j ) = a .  

4.5. THEOREM. Suppose K is almost ineffable and Q is K-well-ordered. Then 
I ~< , (Q)  is K-well-ordered. 

PROOF. Suppose S~ E ~ ( Q )  for i < K, SO Si C Q, I S~ I < K. We have to prove 

that for  some i < j ,  S~=~Sj, i.e., there  is a one- to-one  h : S ~ S j  such that 

t <= h(t)  for  every  t E S,. 

For  any a </3,  let 

S(a, /3 ) = {t E S~ : {s ~ So : t <= s} has cardinali ty = I So I}. 
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Notice  S(a, [3)C_ S~ and: 

(*) if S(a,[3)<=1 So then S, ~1 S/3. 

Because  by the assumpt ion  there  is a one- to -one  h , :  S(a, [3)~  S~, t <- h~(t), and 

we can extend it to h : S, ~ S~ by the definit ion of S (a, [3). 
Now for a </3,  let 

S*(a,[3)={s E So : for  some  t E S(a,[3), t <-_s}, 

s ;  = U 

Let  S* = {tT:i  < IS*I}. Let  aG[3 mean  that:  

(i) a < [3  < K ,  

(ii) Is*l<-Is*ol, 
(iii) ( v i  < Is*l)tT<= tf ,  
(iv) (S, - S *) _-< (S0 - S ;). 

A s s u m e  aG[3. Let  h be a funct ion exempl i fy ing  (iv). If  t E S, - S* then  since 

h(t)f f .S*(a,[3) it follows that  tff_S(a, fl). This shows that  S(a,[3)C_ S*. The  

mapp ing  tT~ to  ̀ shows that  S*---~1S~ and by monoton ic i ty  p roper t ies  of this 

re lat ion it follows that  S(a,[3)<-_, S o, hence by (*), S~ _-<, S~. Thus  it suffices to 

p rove  that  there  are a ,  13 such that  aG[3. Let  A = { a  < K  : t S * l < a } .  

Case L A is stationary in K 
Then  by Fodor ' s  t heo rem I S* I is fixed for  K a 's, and by weak  compac tness  of 

K, we obta in  K of them such that  {i : t7 _-< to`} is fixed wheneve r  a < / 3  are a m o n g  

them.  By T h e o r e m  4.2 we can find some  a < /3  a m o n g  them with (S, -S*)_-< 

(So - S~). Since Q is K-wel l -ordered,  there  is no i with tTN to,. We have  shown 

that  aGfl. 

Case IL A is not stationary in K 
Then  let C be a closed u n b o u n d e d  subset  of K with A fl C = O .  Let  

D = {A < K : A is an infinite cardinal  and for all a < A IS, I = '~ }; it is obvious  

that  D is closed, and by Fodor ' s  t heo rem one can see that  it is unbounded .  Since 

by the definitions 1 S o l =  E~ 0 I S~ 12, we have for A E D, I S*I  < Z. Deno t ing  

E = C V/D, we obtain  that  E is closed unbounded  and for  A E E, I S* I = "~. 

We will finish by showing that  for  some  a, ~ ~ E, aGfl. Assume  that  this is 

false. Def ine  f(a,  [3) for  a,  [3 E E, (~ </3 ,  as follows: if (S, - S*) ~ (So - S ;)  then 

f(a,[3)=O; otherwise  since aG[3 is false, there  is an / < I S * ]  = a such that  

tT;~ t~, and let f(a,[3) be the successor of the least such i. Now we use a lmost  

ineffability of K to obtain  F _C E, IF  I = K, and i so that  for  a < [3 in F, f(a,  [3) = j 
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(see 4.4(6); observe that since / is defined on a closed unbounded set, it can 

always be extended in a manner that yields such F). This, however, is a 

contradiction, since j = 0 would contradict Theorem 4.2 while if j = i + 1 then 

{ tT :a  E F} would contradict the assumption that Q is K-well-ordered. 

4.6. DEFINITION. U F B x ( A , K , a )  means that for every A-X-barrier B of 

depth _-< a, there is A _C A, I A I = K, such that X Seq<~ (A)  f3 B _C X Seq~, (A)  

for some n. 

4.7. LEMMA. (1) I f  K is weakly compact, ct < K then U F B x ( K , K , a )  holds 

( X  = I , D ) .  

(2) I f  K is Ramsey ,  then UF B, (K, K, a ) for every a. 

PROOF. (1) By induction on a. 

For c~ < co, this is trivial. For c~ => to, let a = 8 + n, 8 a limit ordinal, n finite, 

and let B be a K-X-barrier of depth ~. 

As K is weakly compact, K~(K)I~,~ 1, hence there is a set A C K _  of 

power K, such that if rl E X Seq~,+l(A), Dp(~, B}depends  only on l(r/) (and the 

order-relations between the r l ( m ) w h e n  X = D).  Hence S = { D p ( r / , B ) :  7/ 

XSeq~,+~(A)} is finite. Now if ~ E X S e q , , ( A )  then D p ( ~ l , B ) < - < _ a + n - m  

(prove by induction on m) hence for T /EXSeq,+~(A) ,  D p ( r / , B ) < &  Let 

8 * = Max(S fq 8), so for any r / E  X Seq<~ (A), Dp ('O, B)  < 8 f f  Dp (r/, B ) =< 8 * 

(if l(rl) < n + 1 - -  obvious, otherwise Dp(rhB)=< Dp(rl  I(n + 1 ) , B ) =  < 8*). So 

Dp(( ) , B A X S e q < ~ ( A ) ) _ - < 8 * + n + l < a ,  and we can apply the induction 

hypothesis. 

(2) Obvious. 

4.8. LEMMA. UF Bx  (A, K, c~) when A >= h (K, a ), where h is defined by induc- 

tion on a:  

(i) f o r a < t o ,  h ( K , a ) = K ;  

(ii) for a = & limit h (K, a ) is the first A which is >-_ h (K, fl ) for every fl < a and 

has cofinality > cf(a);  

(iii) for ct = 8 + n, 0 <  n <to,  8 > 0  limit, h ( K , a ) =  a , (E~<sh(K ,~ ) )  § or even 
~,_,(2<l~h~,~l) +. 

PROOF. We prove this by induction on a. W.l.o.g. a = h (K, a) ,  Dora B = a. 

Case I. a < to 

There is nothing to prove. 

Case II. a = S l i m i t  

For every i < A ,  D p ( ( i } , B ) < c t ,  so as c f A = c f h ( r , a ) > c f ( a ) ,  for 
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some / 3 < a ,  A={i<3.:Dp((i) ,B)<-<_/3} has power 3.. Now let B ' =  

B A X Seq<~ (A),  a'  =/3 + 1, and apply the induction hypothesis. 

Case III. a = 6 + n ,  n > 0 ,  6l imit  

We can easily prove by induction on k, that if r/ E X S e q k ( r ) ,  D p ( r / , B ) =  < 

S + ( n - k )  and if k > n ,  Dp(rt, B ) < 6 .  Let 6=U~<cf~a, ,  o~,<6, i < j ~  

ai < a  t, 3.~ = h(K, ai + n + 1 ) a n d  we define a function G: 

Dom G = I Seq,+~(K), 

G (77) = min{i : a~ _-> Dp (r/', B ) where ~'  E X Seq, +1 (K), range (r/') C_ range (~1)}. 

--~ l i t  ~n+l By the Erdos-Rado Theorem we know that A v,j~<cfs, so there are i < cf 6, 

A C_ A = Dom B, the order-type of A is 3.~ and G r I Seq.+~(A) has the constant 

value i. By the definition of 3.i and the induction hypothesis we finish. 

4.9. LEMMA. I f  UFBx(A ,K ,a ) ,  Q is (K,n)-X-bqo for every n, then Q is 
(3., a )-X-bqo. 

PROOF. Trivial. 

4.10. LEMMA. Suppose that for some a, ~ (Q) is not A-D-well-ordered. Then 
there are T < A  +, and t ~ u ~ ( Q )  ( i < 2  A) o[ hereditary power <=A (i.e., 

I Tc(t~)[ <-_ A ) which are pairwise incomparable. 

REMARK. I f ' ~  (Q) is not A-D-well-ordered, then ~+~  (Q) is not '~ (A)-D- 

well-ordered at least when there is no strongly inaccessible K, 3. < K _--< y. 

PROOF. Choose s~ E ~ ,  (Q) (i < 3.) pairwise incomparable. Choose/x regular 

such that 3., Q, a, s~, ~+~(Q) E H(/z)  (H(/z) is the family of sets (in the universe 

of set theory), with transitive closure of power < /z) ,  and let N be an elementary 

submodel of H(/x), 3. + 1 C_ N, of power 3. to which (s, : i  < 3.), Q, ~+~(Q) 

belong. Let s'i be s~ as interpreted in N (in other words, collapse the ~ hierarchy 
over Q). 

It is easy to check that if y is the order-type of N 71/z (which is < A +) then 

s~ @ ~ (Q) (i < 3.) and they are still pairwise incomparable (by absoluteness). 

Now let S~ _C 3. (a <2*)  be subsets of 3. incomparable by inclusion, and 

t~ = {s'~: i E S~} E ~,+~(Q) are as required. 

w The trees 

5.1. DEFINITION. (1) j-o is the class of trees T = (T, -< ) of height _-< to with a 

root rt(T)---rtx and T, is the set of elements from level n, for x E T,-1, 
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St(x) = {y : x < y E T.}, so Sr(x) is the set of immedia te  successors of x. We 

write somet imes  S(x) instead of Sr(x). 
(2) For  each tree T = (T, =< ) a depth  function is defined: 

(i) D p r ( x )  = s u p { D p T ( y ) +  1 :y  E ST(X)} , 

(ii) D p T ( x ) =  oo if not eventual ly defined by (i). 

Let  D p ( T )  = Dp~(rt~). 

(3) f r~ ,  = {T E if-": Dp(T)  _-< a};  fr%~ = U{~-~ .  : c~ an ordinal}. 

(4) For  T , , T 2 ~  fr", an embedd ing  / : T , - - > T 2  is a function preserving the 

order  and the level and is not necessarily one to one. 

5.2. DEFINITION. (1) 9-' is the class of models  M = ('iv, =<, < )  such that  

(T, ~ ) E  fro, and < is a partial order  which is union of <~ (x E T)  where  < ,  

well orders  S(x). 
(2) O -2 is the class of models  M = (T, _-< ,E,  < ) such that  (T, _-< ) E  fr(', E is an 

equivalence relation, such that each equivalence class is included in some S(x), 
and < well orders  each equivalence class, and x < y ~ xEy. 

(3) fr~ (Q) is defined as fr~ but we add to the model  a funct ion from the tree to 

Q. We look at it as writing an e lement  of Q on each node.  

(4) An embedding  for frt is defined as in fro, but it has to preserve the 

addit ional  relations (but not their  negations).  For  f r ' (Q)  we have to demand  

q(x)<= q(h(x)), as usual. 

(5) f r ~ ( Q ) ,  fr~<~(Q) are defined as in 5.1(3). 

Embeddabi l i ty  naturally quasi-orders  fit, 3--~(Q). 

5.3. MAIN THEOREM. If A > No, Q a [K ; A ]-bqo then ~-2(Q) is [K ; A ]-bqo too 
(hence, also, frO(Q), f r l (Q)  are [K;A]-bqo) .  

PROOF. We first prove two claims and then re turn to the theorem.  

Now for each to-tree T and ordinal a, we defined the a th approximat ion  T ~ to 

it: 

the e lements  are {(s, 7/): s E T. ,  l (~ )  = n + 1, c~ = r t ( 0 )>  ~ ( 1 ) > . . -  > ~ ( n )  

for  some n < to}, and 

(So, no) <-_ (s,, nO iff so<= s~, ~o<-_ m. 
If M = (T, E, < ,  q ) i s  a fr2(Q)-tree we can similarly define its a th approxima-  

tion M ~ =(T~,E~,<",q"). We have to define q~((s,n)), ET,,,), <~,,~ for 

( s , n ) E T L  

Let  q~((s,~))=q(s) .  If s E T , ,  ( s , ~ ) ~ T " ,  then E~,.,)={((t,,v),(t2, v)): 
t~, t~ E St (s ) ,  tiE, t2, v = rl^(i), i < "0 (l( '0) - 1)}, and <~',,~) = 

{((tl, V),(tz, /-')> : t, <st2, P = r/^(i), 7/(l(r/)- I)> i}. 
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5.4. CLAIM. (1) Every a th  approximation to M has an embedding into it. 

Also if c~ _-< fl, the ~ th approximation has an embedding into the fl th approxima- 

tion. 

(2) If M~ E~r2(Q) for / =0 ,1 ,  A =>llMoll+llM, II, ,~ infinite, and for every 

a < (2')+, there is an embedding of M~ into M~ then there is an embedding of 

Mo into M~. 

(3) Op(M~),  _<-a. 

(4) If M~ E ~-2(Q), A = II Moil + II M~ II, )t infinite, a - (2')+ and M~' _-< M~' then 

M0 -< _ M~. 

PROOF OF 5.4. (1) Just map (s, r/) to s. The second phrase is easy too. 

(2) Let g, : M~'---~ M~ be a ~-2(Q) embedding. We now define by induction 

on n, for every s E (M0), = the n th level a set A, _C (2*)+, I A,  I -- (2')+, and for 

each s r E A,, an ordinal a'(~'), ~" < a ' ( ( ) <  (2*) + and a decreasing sequence 

r/~ such that / ( r / ~ ) = n + l ,  r/~(0)--txs(~'), r/~(n)_->s r and a function 

hs : {rtro} u U,<~S~,,(t)--* M~ such that for every a EDom(h , ) ,  a E (Mo),, ~, 

h~ (a) = g~s~)((a, r/~ Im))  for all ( @ A~. 

We assure also that the functions h~ are consistent. It is easy to define and 

show U s~T0 h, is the required embedding. 

(3) E a s y -  prove by induction on y that s E M . ,  ~/(n)=<y, ( s , r / ) ~ M "  

implies Dp((s, r/)) _-< 3'- 

(4) By (1) and (2). 

5.5. THE bqo CRITERION LEMMA. The following is a sufficient condition on a 

quasi-order Q, for being [K;A]-X-bqo, when A =1  or A->No. Let So = 

{(q~,q2):q~ GQ,  q 2 ~ Q  but not q~ =<qz}. 

THE CRITERION. There is a (rank) function rk from Q to ordinals (or any 

well-ordered class, or even well-founded one), a two place function s from SQ to 

Q and a function F* from So to A such that: 

(a) for no q~, q2, q3, (q~,q:)E So, (q2, q3)E SQ; q ~ s ( q l ,  q2)<--s(q2,q3)#q2 
and F*(q~,q2) = F*(q2,q3); 

(b) if t E Q is not with minimal rank then s(t, q ) ~  t and rk[s(t, q)] < rk[t]; 

(c) the set of members of minimal rank of Q, i.e., Q,, = {q E Q : for no t, 

rk(t) < rk(q)}, is [K ; )t ]-X-bqo; 

(d) if A <No then s(t ,q) <- t; 

(e) if A < I%, (q~, q2) E So, rk(q2) is minimal but not rk(ql) then not s (ql, q2) =< 

q2. 
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REMARK. For A = 1, X = I this is essentially the forerunner criterion of 

Nash-Williams, but his formulation involves barriers and he used a stronger 

definition of a barrier, so also the domain of the barrier is changed, and the 

notion "warily forerun" is involved. In fact we move more of the proof to the 

criterion. 

PROOF OF 5.5. Suppose Q is not [K ; A ]-X-bqo and we shall get a contradic- 

tion. So there is a K-X-barrier B, q~ E Q for r / ~  B and a function F : B --+ A, 

such that for no r/, v E B, r/R~:u, F(r / )  = F(v),  and q~ _<- qv. 

We now define by induction on n, B.,  C, C B., q,~ ~ Q ( r / E  B,) ,  and F, such 

that B, is a K-X-barrier, Dom B. = Dom B, F, a function, B. = Dom F,,  
n ~  n A > I RangeF ,  Isuch that for no T/, v E B.,  DR~u, F . ( ~ ) =  F , (v) ,  and q~=  q~, 

and C, = {71 E B. : q~, is of minimal rank}. 

For n =0 .  B. = B, q~,=q,,, F, is F , ( r / ) - - (F ( r / ) , 0 ) ;  

C, = {TI ~ B, : q~ has minimal rank}. 

For n + 1. Let B.+~ = B~.)+l U C .  where 

0 U * B,+l ={~ u : ~ E B , , v E B , , ~ I R l v , ' q ~ C . } .  

0 n n Let C,+~ = (7, U {T/U* v : "q U* u ~ B,+:, "qRlv and s(q~, q ~) is of minimal rank 

or F. ( ' q )#  F. (v)}. Choose q* E Q =  arbitrarily. Let us define q~+~ (~ ~ B.+ 0 

. o R~xu, F , ( ~ ) = F , ( v ) ,  s(qn,q~) i f o ' = T 1 U * v ~ B . + l ,  rl 
0 q~+ '=  q* i f o - = r l U * v @ B . + , ,  71R~xv, F . ( r t ) # F . ( u ) ,  

q ;  /f o- E G .  

We now define F.+,: 

0 r/R~v, fF.(rl) i fA < n o ,  13" =I"/U*v(~B,,+I, 
t ~ R~v, ( u , F . ( ~ ) , F , ( v ) , n + l )  i ra>No,  ~ = ~ U * v E B , + , ,  n 

�9 n n n F.+t(o') = where u = F (q~,q , )  if q~;~ q~ 

and u -- ~ otherwise, 

IF .  (or) i f  tr ~ C..  

FACT A. The induction hypothesis is satisfied. 

For n = 0, this is an assumption. For n + 1, let us check 

(A1) B.+~ is an X-harrier  with domain Dom B. 

Let ~/E X S e q o ( D o m B ) ,  and we shall show that for some l, 7 / I l  E B,+t. For 

some k, "O I k E B.,  and for some m, 7/- [ m ~ B.. If rl [ k E (7. then r / [  k E B.+~, 
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otherwise ( , / [ k ) U * ( 7 / - [ m ) ' ~ 7  is in B~ hence in B.+I. Now the other 

conditions for "B.+I is an X-barr ier"  are trivial in our case, and Dom B.+z = 

Dom B, obvious by the above. 

(A2) C. = {71 E B. :qT, minimal}, JRangeF.  I_--- A. 

The proof is easy. 

(A3) Suppose o"1, 02 E B.+I, F.+~(0"2)= F.+~(0"2), 0"~R~0"2. We shall prove that 
n + l  < n + l  n o t q . ,  = q ~ 2  �9 

We check by cases: 

Case (i). 0", 0"2 ~ C. 
Then 0"2, 0"2 ~ B., q ~ '  = q~,, q.+l = q~2, F.+~(0"~) = F. (o'l), F.+I(0.2) = F. (0.2), 

so use the induction hypothesis. 

Case (ii). 0.1, o'2 E 3%2 

Then let for / = 1,2: 0.t = ~Tt U*vt, ~ E B . ,  u~EB. ,  ~7~EC.. 

As o'~ _-< 0.2, clearly vl _-< o'2 hence v~, 7/z are comparable but both are in the 

X-barrier  B., so v2 = ~/2. As F.+~(o'~) = F.+2(0"2), necessarily by F.+2's definition, 

F. (rt~) = F. (~72) and F. (v,) = F. (v2), so by the induction hypothesis not q,], _-< q"~, 

. . . .  F (q ~,, q v,) = F* (q.~, q .~). we have already nor q.~ ~ q v~. So (q.,, q .,) C So. Also * . . . . .  

proved they are defined. They are equal; if A ->_ 1~o, by the definition of F.+2, if 

A <t~o as IRangeF*[  = 1. 

By the induction hypothesis, if rt E B.,  q.] is of minimal rank, then rt E C.. 

Hence,  as ~1~ C., q%~ and q% are not of minimal rank. 
rl n n n Now let q~ = q., ,  q2 = q ~ ,  = q,72, q3 = q~2, SO we have proved that q~, q2 are not 

of minimal rank, hence (by part (b) of the criterion), s(ql, q2)# q~, s(q2, q3)# q2; 

and also not q2 <- q2 nor q2 --< q3 (by induction hypothesis on n) and F*(qt, q2) = 
F*(q2, q3). So by (a) of the criterion, not s(q,,q2)<-s(q2, q3), that is not 

n n ~ n n ~ n + l  s(q. , ,  q .,) = s(q.2, q.~). So by the definition of q.]+l this means not q],+~ = q ~  , so 

we finish Case (ii). 

Case (iii). 0"1EB~+~, 0"2EC. and 0"2EB.. So 0"1=r/z@*v~ as in (ii), 

0"2E B.. 

So as o'~ _-< 0.2, now vl _-< 0.2 E B. and v~ = 0.2. If A _-> ~0, by the definition of F., 

the last coordinate of F.+~(oq) is n + 1, while for F.+1(0.2) this is not the case, 

contradicting the assumption that F.+,(0.,)= F.+2(0.2). 

So assume A < N0. 

Now F.,  F* are constant, hence by the induction hypothesis not q,], _- q"~, and 

as rlt E C., q,], is not minimal, but o'2 = v~ ~ C., hence (we can prove by 
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induction on n ) q"~, has minimal rank. So by part (e) not s (q 7,,, q"~,) _-< q"., which 

means q ~ ' ; ~  qo"~ +t as required. 

Case (iv). o,, G C., crz E B~ 

So let or2 = */~O* *,~, r/~ ~ B,,  *,~ ~ B,,  r/~R~,t,~, ,/~ ~ C,. As in case (iii) we 
n n < n know Z < No, F. (7/2)= F.§ F.+,(~r,). So q"~,+' = q~,, not q~, = q,~. Now if 

our conclusion is trivial. As F,(~2)=F.(~,2)  by the induction 
n < n n _ _  n+ l  C " " n ~ n not q ~ =  q~, so by part (d) of the n t en o n  q ~ =  s ( q ~ , q ~ )  - q ~  , so 

q ,~: = q,,~ , 

hypothesis 

we finish. 

We thus finish the proof of (A3) hence of Fact A. Now let B ' =  U . < ~ C , ,  

q ~, = q ,~ for r / E  C. - U ,<. C,, and F '(r / )  = F. (r/) for r / E  (7. - U ,< .  C~. We shall 

prove that B' ,  q~,, F '  exemplify Qm is not [ r  ; A ]-X-bqo (i.e., B '  is a K-X-barrier 

and r / ,~ ,EB ' ,  riR~v, F ' ( a T ) = F ' 0 , )  implies not q',<-q',), thus getting the 

required contradiction. 

n FACT B. If ~ U (7. then for every m _>- n, ~ E C,, C Br,, q ~' = q ~, F,. 07) = 

F.(n). 

PROOF OF FACT B. Check in the definition of F.,  C,. 

1 t < t FACT C. If 7/, v E B' ,  ~Rxv,  F'(T1) = F'(J,) then not q~=  q~. 

PROOF. By Fact B, for every large enough n, F ' ( r / ) =  F, (-q), F ' ( u ) =  F, (v) 

and r/, v E C. C_ B, ; and use Fact A. 

FACT D. If r / E X S e q ~ ( D o m B ) t h e n  for some n, r / [ n E B ' .  

For every n, as B, is a K-X-barrier, Dom B. = Dom B (by Fact A) there is 

k ( n ) <  to, r /r  k ( n ) E  B,.  If for some n, ~1 [ k ( n ) E  C, then by the definition of 

B',  rl ~ k (n ) E C, C_ B', so we finish. Suppose r/, = "0 [ k (n ) E B, - C, for every 

n. For each n, there is m (n) < to such that ~,. = (77-) [ m (n) E B.. As B. is an 
1 0 U ~ X-barr ier  r/~ ~ v. and even "O.Rxu., so by the definition of B.+,, "0. u. E 

B~ _C B.+,, so necessarily r/. U* u. = r / I ( m ( n ) +  1) = 7/.+,. As r/.+, E C.+~, 

clearly F . ( r l . ) = F . ( u . ) ,  hence "+' s " " q . . . , =  (q. . ,q. . ) .  As 7. E C . ,  q . .  is not of 

minimal rank. Therefore  by part (b) of the criterion rk(q.]++~,)< rk(q.].). Since this 

holds for all n < to, this is a contradiction to the well-foundedness of the range of 

the rank function. 

The other requirements for an X-barrier  are easy to verify. This completes the 

proof of 5.5. 

CONTINUATION OF THE PROOF OF 5.3. By Claim 5.4 (3), (4) it suffices to prove 

that ,3-~(Q) is [K ; A ]-X-bqo for every a. We define a rank function from ~ , ( Q )  
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to triples of ordinals, ordered lexicographically. So let M = (T, =< ,E, < ,q), and 

we define rk(M) = (a,(M), a2(M), a3(M)) where az(M) = DpM (xk-t(M)), where 

k = k(M) = min{k':] Tk,[ fi 1}, x~(M) is the unique x E T~ for l < k, 

0, rk = 0 ,  

a2(M) = 1, T~ is an E-equivalence class, 

2, otherwise, 

or is the order type of (Tk, < ) when it is well-ordered, and zero otherwise. 

So Q,,, the set of M E Q  with minimal rank, is just the set of M with 

Tk(M~=O. Now suppose M, N E  3"~(Q) but not M < N .  We shall define 

s(M, N) and F*(M, N) so that we can apply the criterion of 5.5. 

Case I. k (M)=  k(N), a2(M)= 2 
Checking the definitions it is clear that there is a set A C M, such that 

(a) A fq MktM) is exactly one E-equivalence class, xt (M) E A for 1 < k, and 

x < y E M  ^ x E A  N MktM~---~ y E A ,  
(b) not M r A - < N .  

Now we let s(M, N ) - - M  I A, F*(M, N ) =  1. 

Case II. k (M)=  k(N), a2(M)= 1 = a2(N) 
Let Mk~M~={a~ where for i < / ,  a~ ~ and Nk~N~={a~:i<~,} 

where for i < j, al <Na~. Let ~'t =/3~ + n~, where n~ < oJ,/3, is zero or limit. Let 

for l = 0[1], A ~i be the set of elements of M [of N] which are comparable with a I. 

By an assumption, not M =  < N, hence there is no monotonic f :  ~'o---~'~ 

such that MtA'/<=NtA~o~ for i<~,,. Hence not Mtl..J{A~ 
N I I..J{A l " i < fl~}, or for some l < no, not M I A ~247 N I A '~,§ I f thef i rs t th ing  

occurs then basically t not M II..J{A'/:i < flo}=< N and we define 7 ( i ) <  fl~ by 

induction on i<r io ,  as the first 3 '</3,  such that 3,>3,( j)  for j < i  and 

M I A o _ N I A ~,~. We cannot succeed to define 3, (i) for every i, so let i* be the 

first i for which 7(i) is not defined. 

We let s ( M , N ) =  M I I.-J{A ~ : i <= i*}, F*(M,N)  = 2. 
z l  o If the first thing does not occur, l < n~ is minimal such that M I,~,,§ 

N I A ~,§ fails (maybe /3o + l => ~'z) then we let 

F*(M,N)=(3,1) ,  s (M,N)=MIA~, ,§  

Case III. k ( M ) ~  k(N),  or k (M)=  k(N),  a2(M) = 1 ~ az(N) 
We let F*(M,N)=(4 ,  k(M),k(N) ,a2(M),az(N));  s (M,N)  is a tree with a 

single element. 

* The point is that we are interested in the case F*(M, N)  = F*(N, N'). 
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Case IV. k ( M ) = k ( N ) ,  a 2 ( M ) = 0  

We let s ( M , N ) =  M, F * ( M , N ) =  5. 

Now it is easy to check that (a), (b), (c) of the criterion are satisfied, so we 

finish. (For (c) we have to prove that {M : a2(M) = 0} is [K ; h ]-bqo. 

5.6. THEOREM. The following are equivalent: 

(a) Q x (to, _-< ) is K-X-bqo,  

(b) ~**(Q)  is r - X - b q o  for every a (see Definition 1.3(6)), 

(c) ~**(Q)  is K-X-bqo, 

(d) for every K-X-barrier B, and q~ @ Q (T1 ~ B)  for some 77, v @ B, ~q R~v, 

q~ <_-q~ and 71- # v. 

PROOF. not ( a ) ~  not (c). Define qt")E ~**(Q)  by induction on n for 

q E Q : q t ~  qt"+')={qt")}. Now we assume Q •  is not K-X-bqo,  so 
I 

there is a K-X-barrier  B, and ( q , , k ~ ) E Q x ( t o , ~ ) ,  such that for no r/Rxu, 

n E B, u E B, and (qn, k , )  --< (q~, k~). Now define for r / E  B, t, = q~k)@ ~ ,  (Q). 

Now qt")_-< t tin) iff q _-< t, n _--- m, so we finish. 

(b) ~ (c). Trivial. 
(a)  ~ (d). As ((q,, l (n ) ) :  n ~ B) does not show Q x (to, _-< ) is not K-X-bqo,  

for some r /@B,  v @ B ,  nR~xv, and (q, , l (n))<=(q~,l(v)) .  So q,<=q~ and 

l(lq)<= l(v),  hence ~ - ~  v, so we finish. 

(d) ~ (b). Repeat  the proof of 1.8 

REMARK. Clearly [K ; 2]-X-bqo implies (d) from the theorem (use F : B ~ 2, 

F(r / )  -= 1 (77) mod 2). Also for r = no, X = I, (a),. �9 (d) are equivalent to X-bqo.  

5.7. THEOREM. The well-ordering number of 9-o ordered by one-to-one em- 

beddability is the first beautiful cardinal Ko > ~o. 

PROOF. By 5.3, 9 -o is Ko-I-bqo, even under  one-to-one embedding;  now let 

h < K o ,  and we prove that it is not h-narrow.  Let  Q = ( t o , = )  so it is not 

No-narrow, hence by 2.5 for some a ~ (Q) is not h-narrow,  so let t~ @ ~ (Q) 

(i < h)  be pairwise incomparable.  Let S~ (i _<- to) be infinite, pairwise disjoint 

subsets of to, U s ~ = { 3 n + l : n < t o } .  For each i < h  we shall define a tree 

T~ E fro. The elements of T~ are the sequences (so,-- ", s,,) such that: 

(a) So = t,, 

(b) if s, C Tc(t~), s t~ Q, l < m and I E S~ then st+, E st, 

(c) if s tETc( t , ) ,  s t ~ Q ,  l < m  and IESo  then st+t =s t ,  

(d) if st @Q (so st is a natural number),  l < m and l ~  S,, then st§ = st, 

(e) if st E Q, l E S,, and l < m then st§ ~ {to, to + 1}, s,+2 E {to + 2, to + 3}, 

(f) if st -- to +2 ,  then l = m (so st+~ is not defined). 
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The order =< on T, is an initial segment. 

We leave the reader to check that T~ = (T~, =< )( i  < A)are pairwise incompar- 

able. 

REMARK. (1) f 0  has well-ordering number No, as T~ = T2 iff the depth of Tt is 

< the depth of T2. 

(2) The choice of T, is such that they will be suitable for 5.8 too. The point is 

that we should be able to easily reconstruct from the tree what form each st has, 
hence t,. 

5.8. THEOREM. Suppose Q is non-trivial in the sense that for some ql, q2 E Q, 
ql ~ q2 

Then the well-ordering number of frO(Q) and even f~  is the first K for which 
Q is [K ;No]-bqo (see 2.13(2)). 

PROOF. If Q is [r;~o]-bqo, then by 5.3, fO(Q) is [K;~o]-bqo hence ~r 

ordered. Now suppose Q is not [A;No]-bqo, then by 2.11, Q• = )  is not 

A-D-bqo, then for some a, ~ (Q • (to, = )) is not A-D-well-ordered, so there 

are t~ E ~ ,  (Q • (to, = )) (i < A) pairwise incomparable. We define T~ as in the 

proof of 5.7 replacing "s, E Q '  by "s~ = (qt, nl) E Q • (to, = )" and S~, by S,,. We 

then define f~ : T~ --~ Q by: 

(a) i f (so, . .  ",Sm)ET,, s~ = ( q , n ) E Q  • =) ,  m E S ,  then fi((So,..-,s~)) = 

q, 

(b) if g = ( S o , " ' , s , , ) E T ,  s,, =to or Sm =to +3 then f~(~)=qt, 
(c) in the other cases f~(g) is q2. 

We leave the rest to the reader. 

w Unions of few scattered orders 

6.1. DEFINITION. (1) A (linearly) ordered set I = (I, < )  is scattered if we 

cannot embed the rationals into it. Equivalently, by a theorem of Hausdorff ,  

they are generated from {1}, by welT-ordered and inversely well-ordered sums. 

(2) ~ ,  is the class of linearly ordered sets I, which can be partitioned into 

-<-No scattered orders. ~ is naturally quasi-ordered by embeddability. 

6.2. DEFINITION. Let 7, v E Seq<~ (a). We say that ~ <Xv iff for some k, 

~ [ k = v [ k ,  ~ l~v  and 

[k even, ~/(k) < v(k)] or 

[k even, l(n) = k] or 
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[k odd, r / ( k ) >  p(k)] or 

[k odd, l ( v ) =  k]. 

The relation <x linearly orders Seq<~ (a). 

6.3. THEOREM. (1) Every scattered order is isomorphic to some (A,_-<*), 
A _C Seq<~ (a). 

(2) Every I E ~)~No is isomorphic to (A, <_x), A _C Seq<~ (a). 

PROOF. See Laver [10]. 

6.4. DEFINITION. (1) A triple P = (I, F), F2) is a )t-representation if 

(a) I is a set of sequences of ordinals closed under initial segments, 

(b) F,(r/) = 0 iff for no i, r/^(i) E I, 

(c) if F~(r/)= 1 then { i :r l^ ( i )EI}  is some ordinal a ,  ~_h, 

(d) Dora F2 = F~Z({1}), F2(rl) is an ordered set with universe a , ,  
(e) Range F~ = {0, I, 2, 3}. 

(2) P is called standard if I is standard, which means: I C_ Seq<~ (a)  is closed 

under initial segments and r/^(i) E I ^ j < i f f  r/^(j) E I. 

(3) The order J[P] = j e =  ( j , , < , )  which P represents is defined by: j e =  

F;'({O}); 

<Pv JifFy(n) = Fz(v)=O, and for some k 

,Ttk=~rk, ~r(k +1)~nt(k +1) 
and F,(,7 tk)= I ~ F2(,7 tk)~n(k)< ~(k) 
and F ~ ( 7 / r k ) = 2  :~ n ( k ) <  ~,(k) 
and F~(-q t k ) = 3  ~ n ( k ) >  ~,(k). 

6.5. CLAIM. Suppose PI, P2 are h-representations, f : PI -+P2 (i.e., 

f : I e, ---) I P:) is a one-to-one function, it preserves the level,'F1, the order "~ and if 

fO?^(i~)) = ~,^(j,) (l = 1,2) then 

(a) F f , ( r l ) = 2 ,  3 ~ [i,<i~=-j,<j:]; 
(b) F~"07) = 1 ~ [F2e'(r/)~ i~ < i2 r Ff~(v)~ il <j2]. 

Then J[P1] is embeddable in J[P2]. 

PROOF. Trivial. 

6.6. THEOREM. Every member I of ~i~ has a standard ),-representation. 

PROOF. We prove this by induction on the power of the order. If I I I -  h, this 
is trivial, so suppose II[=~z>A. As I~9~ ,  there are A, CSeq<,(,)(/z), I =  

I...J,<, I,, I, ~ (A,,N *) (see 6.3), and let g~ :A~---> I~ be the isomorphism. W.l.o.g. 
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A, = Seq<,t~(/x), since any partially o rdered  set can be linearly o rde red  by a 

relat ion extending the partial order ,  and if we have a A-representa t ion of an 

order  we can easily obtain a A-representa t ion  of any subset with the induced 

order .  

We get I c from I by inserting in each Dedek ind  cut two elements  (small and 

big). Let  I'~= {a E L :l(g;Z(a))< n ( i ) -  1}, II = {a E I, : g ;~ (a )  = r/^(6) for 

some r/ and limit 6}. We define hl:II----~I c, / = 0 , 1 ,  by h~ = 

l i m ~  g~ ( r /^(a))  and hl(g~(71^(8)))=lim~sg~(~l^(a)). Let  I* = 

I U {hl(a)  : a E II, i < A, l < 2}. Let  I~ = {a E L : g['(a) = r/^(a + 1) for  some "O, 

~}, and define h~:I2--->l~ by h~(g~(~?^(e~ + 1))) = g~(rt^(a)). For  every  x E l * ,  

a = g, (r/) E L we let h ~'(a ) = g~ (77 ̂ (c~ )) where a is minimal so that g~ (r/^(c~ )) < 

x, and we define h>X(a) analogously (the functions h[ x, h >x are not always 

defined).  Let  I * =  U , < c f ,  1" ,  I I* , I</x,  I*, increasing and continuous,  so that 

I N I* contains {g~ (( )) : i < A } and is closed under  h ~, i < A, and under  h ~ ,  h,>X 

for i < A ,  x E I * ~ , a n d  I * = ( I n I ~ ) U { h l ( a ) : a E I I n I * ,  i < A ,  / < 2 } .  

Now for each b E I* - I, we define a Dedek ind  cut of I* : if b is the small (big) 

member  in a pair which we inserted in a Dedek ind  cut of I, then 

D~ = ({c E I* :c  < b},{c EI~* : c  => b}) 

(then D~ = ({c E I *  :c  -< b}, {c E I *  : c > b})). 

CRUCIAL FACT. Every  a E I * - I *  realizes some D~, b E I ~ * - I .  

To prove this, assume first that a E (I* - I ~ * ) n  I. So let a = g~ (r/), and let v be 

the maximal initial segment  of ,/ such that g~ (~,)E I*.  We distinguish between 

two cases: (i) For  no a > rl(l(u)) does g~(v^(a))EI*~ - -  in this case we take 

b = h~,~(g~(u)); we leave the checking here  and in the sequel to the reader ,  

ment ioning only that h ~ ,  h >x should be used for would-be counterexamples  x. 

(ii) If ( i ) i s  not the case, let a > r/(l(~,)) be minimal such that g,(~,^(o~))EI*. 
Since I N I* is closed under  h~ and g~(~,^(Tl(l(1,))))~I*, o~ must be a limit 

ordinal,  and we take b = hl(g~(u^(a))) .  

Assume now that a E ( I * - I * ) - I .  Then  for some l < 2 ,  i < A, a ' E I l - I * ~ ,  

a = hl(a'). Let  a ' =  g~(r/), let ~, be the minimal initial segment  of "q such that  

g~(~,)~ I * ,  and let a " =  g~(~,). One  can verify that a and a"  realize the same 

Dedek ind  cut of I* ;  thus by the first part  of the proof  we finish. 

Now we define by induction on a -<cf/z, J~, F~', F~, g~ such that: 

(1) J ,  is a s tandard set of sequences  of ordinals. 

(2) FT, F~' are as in Definit ion 6.4(1), except  that  in (b) we require  just "on ly  

if". 
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(3) g~ : I*  ~ J~ is one-to-one; if a E I* N I then FT(g~ ( a ) )=  0; if a E I * -  I 

and is small (big) in its pair then FT(g~ ( a ) )=  2 (3). 

(4) g~ is order preserving, where the order on range (g~) is defined as in 6.4(3) 

with the additional rule that if r / <  v then Fi'(r/) = 2 ~ 7/> v and F~'(r;) = 3 

r / < v .  

(5) J~, FT, FL  b increase with a and are continuous. 

For the first step of the construction, we use a standard A-representation of I* 

(it exists, since it is easily seen from the definitions of the h l's that I* E ~ ,  and 

Ii*r < ~), and modify F1 so as to satisfy (3). At limit steps we take the unions. 

Let us describe the construction for a + 1. For each a E 1"+1 - I*, we pick some 

b E I * - I  such that a realizes D~. Now for every such b we take a standard 

A-representation of the set of a ' s  for which b was picked, and add it to J~ above 

g, (b) (renaming the new nodes so that we will obtain a standard J~+l). Here 

again we modify Fl of the representation so as to satisfy (3). Our definitions and 

construction assure that the resulting ga§ is order preserving. 

Thus, the construction goes through, and from Jcf ~., Fcf" g;,ce(. i , - 2  one can easily 

obtain a standard A-representation of I, with gcf,, r I giving the isomorphism. 

6.7. CONCLUSION. For any h->No and beautiful K > A, ~ is [K]-I-bqo. 

Moreover, e.g., if Q is [K;2~]-X-bqo, then ~O2~[Q] is [x;2~]-X-bqo, where 

~RA [Q] is the class of (I, [), I E ~A, [ : I ~ Q, ordered by embeddability where 

F : (I1,[~)---~ (I2,[z) is an embedding if F : I~  ~ 12 is order preserving and [~(x) < 

fi[F(x )]. 

PROOF. By 6.5, 6.6, 5.3. 

REMARK. (1) This is a quite strong result. We can prove by it [K;A]-I-bqo, 

e.g., for (~(O),<_-0 (the mappings are one-to-one), and the trees with the 

embeddings Nash-Williams used. 

(2) For A = No, we could get K = No, which is the celebrated result of Laver, 

which we generalize here. 

6.8. THEOREM. Let Q be a quasi-order, A a regular cardinal. Then we can find 

a function H, such that 

(1) D o m H  ={a  ~~174 
(2) Range H C Seq<,+(Q), 

(3) if not a <= b then not H(a)<-H(b) .  

REMARK. Seq<~(Q) is ordered by (q~: i<a)<=(qS: j</3)  iff there is a 
h(i) monotonic increasing h : a ~ / 3 ,  q~ <= q 
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PROOF. We define H ( a )  by induction on a = Dp (a)  = min{/3 : a ~ ~ ( Q ) } .  

F o r 0 < i < A ,  l e t / ~ : A ~ i  be such that for e v e r y j < i , { a < A : ~ ( a ) = j } h a s  

So a E Q, and we let H ( a )  = (a : i < A). 

Let a = {a, : i < i ( a ) <  A}, so Dp(a~)<  c~, and let 

H ( a )  = n(ar ,  o,tO~)^H(ar, o,<l)) ̂ . .  .^H(ai,,o~j) ̂ . . .  (a < A ). 

Clearly H(a ) has always length an ordinal of cofinality A, and in fact A i~p<a)+l. 

We prove by induction on a that: 

(*) If a, b E ~ ~ 1 7 4  Dp(a ) ,  Dp(b)=<a ,  and not a<=b then no end 

segment of H ( a )  can be embedded into H(b)  (when they are 

defined). Formally, for no 3 ,<A Dp~a~+t is there a function 

[ : [% A D~ta).~)~ A Dpt~+~, f strictly increasing and Q ~ H ( a ) ( i )  <= 

H(b) ([ ( i ) )  for every i E [% ADo'a)+~). 

This is straightforward. 

6.9. CONCLUSION. The X-well-ordering number of Seq<~(Q) is at least that of 
o ~<| and at most that of ~2(Q). 

REMARK. Many times the lower and upper bound agree (use 2.5 and 5.3), so 

we get an exact value. 

6.10. CLAIM. If the D-well-ordering number of Seq<| is a strong limit 

K > I% then the /-well-ordering number of it is also K. 

PROOF. Clearly the/-well-ordering number of Seq<| is =< K ; if it is A < K, 

there are ~ (i < (2 *)+), ~ ~j for i < ]. By the Erdos-Rado  theorem, w.l.o.g. 

(t(~,) : i < A ) is strictly decreasing, strictly increasing or constant. The first case is 

impossible; the second implies {~ : i < A } are pairwise incomparable. So assume 

l ( ~ ) = a  for i < A .  

We can assume that a is divisible by A (otherwise replace 4~ = (q~J : . /<  a )  by 
(q'j : j  < Aa), q%+, = q~.i for j < ~, y < A) and then choose q ' E Q ,  let ~ =  

(q ' :  j < i), and let ~* = ~^tT'~. 
Now {~* :i < A} _C Seq<| are pairwise incomparable. 

REMARK. Really Erd6s-Rado is not needed, and for A < K, A regular the I-  

well-ordering number of Seq<| is > A. 

We return now to the computation of the welt-ordering number of  ~]Y~. 

6.11. LEMMA. Suppose Ko < K~ are beautiful cardinals, but there is no beautiful 

cardinal K, ro < K < ~ .  

power A. 
0 ~ = 0 .  

ot>O. 
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I f  ~ + ro <= A < K~, then the well-ordering number of ~A is K~. Moreover for 

any Ko<=l~ < r~, there are orders I~ (a </~)  such that 

(i) I I o 1 = ~  +, 

(ii) a # /3  implies that not I~ < I~, 

(iii) I~ is the union of A well-orderings (so even of ~ + Ko well-orderings ). 

PaOOF. By [24] there are ~ + Ko orderings J, (i < ~lt + Ko) each with no first 

element of power ~1~ + Ko, no initial segment of one embeddable in a well- 

ordered sum of copies of the others.* Let  Ko---- </Z < K~. We consider Q ~- 

(~l~ + Ko, = ). Checking the proof of 2.5, one can see that it holds for ~o  too. 

Since by our assumptions not/~ -~ (to)~<o '~, it follows that in some ~O(Q) there are 

/.~ pairwise incomparable elements. By 4.10 we may assume that they are of 

hereditary power < / z  +, so that applying the function H of 6.8 we obtain a 

pairwise incomparable family {f~}~<~ _C Seq<~(Q) such that the length of f~ is an 

ordinal/3~,/z + _-</3, < / z  ++. We let I ,  = Xj<~. [Jzt.o)+J2t.o)+l]. Requirement  (i) is 

obviously satisfied, and for (iii) enumerate each summand (each has power 

N~ + Ko) and consider for every y < ~ + Ko the set of y- th  elements. Finally if g 

embeds I~ into L, ,  then for j </3a we let j '  be such that g" maps an initial 

segment of J~to~) into J~t,-o") hence necessarily f~ (j) = f~,(j'). Then the mapping 

j ~ j '  shows that f~ _-< f ' ,  thus proving (ii). 

6.12. COYCLUSmN. The well-ordering number of ~ x  is the first beautiful 

cardinal > A, provided that A > ~o. 

w S o m e  exact  c o m p u t a t i o n  

7.1. DEFINITION. (1) f f ~ ( Q )  is the class of ( T , / ) C  ~-o (Q) ordered by 

embeddings F : (T1, [i) ---> (T2, [z) preserving < and satisfying [~(t) < fz(F(t)). 

(2) ~r~(Q) is defined similarly but F must preserve also the relation " t  is the 

largest lower bound of sl and s2" (this is the order  Nash-Williams used). 

(3) j-I(Q), ff~a(Q) (l = - 1 , - 2 )  are defined similarly. 

7.2. DEFINITZON. Let Q be a quasi-order, ~ an ordinal. We define the 

quasi-order ~ ( Q )  as follows: the elements are as in Definition 1.3(3), but we 

* Let A = 1% + ro. If A > 1% regular or A = a'0, trivially by [24]. The remaining case is A strong 
limit of cofinality No. Let a = X.<.A., A. < a.+. a. regular. For each A. let S~ (a < a.) be pairwise 
disjoint subsets of {~ : ~ < A., cf ~ = l,lo}, for 8 E U So let "0~ be an increasing ~o-sequence of ordinals 
with limit & let P_='>A. v { ~  : 8 E So} ordered lexicographically. Let J. (n < co) be sets of reals, 
IJ. I = 2~~ and let J2 be the inverse of I2 x J.. Then {J"_ : a < a., n < o~} is as required, if the J. were 
chosen correctly. 
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allow sets with repetitions and omit the empty sets; to define the order, we do 

the following modifications in 1.3(4): in (b)(i) the function has to be one-to-one, 

(b)(ii) is omitted, and in (b)(iii) A1 has to be in Q. 

7.3. LEMMA. I f  Q is l%-I-bqo then so are ~--1(Q), 9--2(Q), ~**(Q),  9a~<| 

Seq<~(Q). 

PROOF. By Nash-Williams. 

7.4. DEFINITION. Let Q~, Q2 be quasi-orders (their universes may be proper 
classes). We say that Q1 is locally embeddable into Q2 if for every set K, K C_ QI, 

there is a function H : K--~ Q2 satisfying: H ( q )  <- H(q  ~) ~ q <=q'. We say that 

Q~ is embeddable into Q2 if there is such a function with domain Q1. 

7.5. CLAIM. Suppose Q~ is locally embeddable into Q2. If Q2 is K-X-well- 

ordered, then Q~ is K-X-well-ordered. Similarly for "Q is [K, a ;Al-X-bqo",  

"Q x (to, _-< ) is K-X-bqo", etc. 

PROOF. Trivial. 

REMARK. We have already proved some local embeddability results. 

7.6. LEMMA. 3 ~ ( Q )  is embeddable into 9-~(Q) and J-~(Q) which are 

embeddable into 9-~ 

PROO ~. Trivial. 

7.7. LEMMA. (1) 9--2(Q) is locally embeddable into ~-<~(Q). 

(2) Similarly for f f  ~(Q). 

PROOF. Like 5.4(4). 

7.8. LEMMA. Seq<~(Q) is embeddable into J-~(Q).  

PROOF. For any ~ = (qi : i < a )  E Seq<~(Q) let T~ = {r/: rt a decreasing 

sequence of ordinals < a }, f~ (( )) = arbitrary, f~ ((r t (0), �9 �9 -,7 (n - 1))) = q,~,_~). 

Now, if F embeds (T~,f#) into (T,,f,) then the function F* defined by 
F*( i )=min{ j :  for some T/ET#, 7 / ( l ( r t ) - l ) = i  and ( F ( ~ ) ) ( I ( F ( * I ) ) -  I ) =  j} 

shows that q =< g. 

7.9. LEMMA. (1) ~**(Q) can be locally embedded into Seq<=(Q). 
(2) ~O| can be embedded into ** ~<| (Q). 

PROOF. (1) By 6.8% proof. 

(2) Trivial. 
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7.10. LEMMA. 3-~ is locally embeddable into 3-~L(Q) if 3-~L(Q) is not 8o- 
well -ordered. 

PROOF. We observe that if IT I<  A, T E ~-o ~/<~, A regular, then 

(i) Dp(T) < A, 

(ii) T is isomorphic to a tree of finite sequences of ordinals < h closed under 

initial segments. 

Let H be a subset of 3-~ (which we want to embed into 3-~L(Q)), and let 

((T", f " )  : n < ~o) exemplify that 3-~(Q) is not No-I-well-ordered. We choose a 

regular A bigger than the cardinalities of all the trees in H and the T" 's. We also 

choose q *, q ** E Q such that q * ;~ q ** (this is possible since otherwise 3-~L(Q) 

must be No-I-well-ordered). 

Given ( T , f ) E H ,  we define (T , f )  as follows: T = T U T ' O T " ,  where: 

T'={~7^(A)^~-:r~ET, r a decreasing sequence of ordinals <A}, T " =  

{r/'^(h>^z^(A>%" : r/^(h>^z ET ' ,  VET"")};  

f ( v ) ,  v E T ,  

q** v ( l ( v ) - l ) # O ,  f (v)  = , v E T', 
q*, v E T', v ( l ( v ) -  1) = O, 

f'(')(r'), v = "0^(A)^z^(A)^~"ET ". 

It is easily verified that: 
(T, f )  C ~ ( Q ) ;  

v = ~/^(A )^~-^(A ) E T" ~ Dp~(v) = Dp (T "~)) < A ; 

v E T ' , v ( l ( v ) - m ) = a  <A ~a_-__Dpr  

E T  ~ Op,(~/^(A)) = A, Dp~(rl) > A. 

Now, assume that F : (T1, f~)--> (Tz, [2) is a J-~L(Q) embedding. Since always 

Dp,,(v) _-< Dp%(F(v)), we conclude that the restriction of F to T1 maps it into T2, 
so that in order to prove that (Tt, fl) < (T2, f2) in 3-~ it suffices to show that 

l (F( r / ) )>  l (~)  never occurs for 77 ET~. 

Assume that 7/ET~ is a counter-example to this. If for all v = 

71 ̂ (A )^z E T~, F(v) E T2 then for all such v, Dpt,(v) --< Dp,~(F(v)) + 1 + Dp (T "~)) 

(prove first that the depth of v in T1 U T'~ is =< DpT2(F(v)) and then by induction 

on Dpx,(v)), in particular Dpt,(rl^(A))< A, a contradiction. So for some v = 

r/^(A)^ 7 E T~, F(v) E T~' U T~; by considering some extension, if necessary, we 

may assume that v ( l ( v ) -  1) = 0. Since fl(v)--< [2(F(v)), either F(v) E T; and 

(F(v))( l (F(v))-  1) = 0 br F(v) E T~. In any case, F induces a $r~L(Q) embed- 

ding of (T"~),f "~)) into (T",f")  for some n > l (F( r / ) )>  l(rl), a contradiction. 
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7.11. CLAIM. In 7.10 it suffices to demand that Q is not l~0-I-bqo. 

PROOF. By 7.9(2), 7.9(1), 7.8 (and the transitivity of local embeddability), 

~ O ( Q )  is locally embeddable into ~ ( Q ) .  Now if Q is not No-I-bqo, ~ O ( Q )  is 

not l%-I-well-ordered (check in the proof of 1.12), hence 3-~(Q)  is not N0-1- 

well-ordered. 

7.12. DEFINITION. j-<3(Q) is the class of pairs (T,f),  T as usual and f :  

{r /E T:Dpx(r / )  = 0}--> Q. We call F : (T~,fl)---> (T2,f2) an embedding if it is a 

function from T1 to T2 preserving < and satisfying: r / @ D o m f ~  

[F(r/)  E Dora f2 and f~(~7) --< f2(F(r/))]. 
Notice that (T~,f~)~_ (T2,f2) in 3-~3(Q) iff there is a function F from T~ 

to T2 preserving < and satisfying: for every r / E D o m f ~  there is u, F 0 7 ) _  -< 

v E Domf2, f , (n)~ff f~') .  
We define ~--3(Q), 5r__<3(Q) similarly. 

7.13. LEMMA. ~**(Q),  ~--3 g/__<,~(Q) are isomorphic. 

PROOF. Straightforward. 

7.14. DEFINITION. ~ S ( Q )  is the class of pairs (T,f),  T as usual and f a 

function from T into Q U "the ordinals", such that Dpr(r/)  = 0 implies f ( ~ )  E Q, 

DpT(r/) > 0 implies f(r/)  is an ordinal and r/,~ v < r E T implies f ( ~ ) <  f(v). 
F :  (T~,f~)--> (T2,f2) is an embedding if F maps T~ into T2, preserves < and the 

depth being 0, and satisfies f~(~7)<f2(F(~7)) (in Q if Dpx(r / )=  0, as ordinals 

otherwise); w.l.o.g, no ordinal belongs to Q. 

NOTATION. For ( T , f ) E  ff~S(Q), rl E T ,  let (we consider T as a tree of 

sequences closed under initial segments): 

T(~) = {v : r/^v ~T},  

f~,)0,) = f(r /^v)  for r/^v ~ T ,  

(T, f),~) = (T(,), f(~)). 

7.15. LEMMA. If  Q is not No-I-bqo, then ~ O ( Q )  can be locally embedded into 
~r~S(Q x Q). 

PROOF. Basically we repeat the proof of 7.10, 7.11. As in 7.11, we know that 
0 ~<| (Q) is not No-I-well-ordered, ~<| is not ~o-I-well-ordered, hence surely ** " 

which by 7.13 means that ~r~(Q)  is not ~o-I-well-ordered, hence surely ~Y~S(Q) 

is not ~o-I-well-ordered. Now we use an example of the latter to define a local 

embedding as in 7.10, with the following differences: for ~, ~ T and ~, ~ T' such 
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that u ( l ( v ) -  1)#  0 we let jr(v) be ordinals chosen as small as possible (respect- 

ing the order of the tree); for v E T', v ( l ( u ) -  1) = 0 we let jr(v) = 3' be a fixed 

ordinal which is bigger than all those chosen in the previous stage for any of the 

trees; for u = 7/^(A )^z^(A )%-' E T", if Dp~(v) > 0 then jr(u) = y + 1 + f"')(z')  and 

if D p t ( u ) = 0  then jr(v)= (/(,/),f"')(~-')). The reader will see that the proof 

of 7.10 goes through; in addition to what was done there, we have to verify that 

f~(T1) < fz(F(~l)) for rt @ T1, and for this one has to notice that in order to avoid 

the contradiction in the end of the proof of 7.10, it is necessary that n = 

l(F(71)) = l(n). 

7.16. LEMMA. ff<~5(Q • Q) is locally embeddable into 3"~5(Q). 

PROOF. Let K _C ff~5(Q • Q) be a subset, and let ~/be an ordinal bigger than 

all those occurring in K. Given ( T , f ) E  K, we obtain ( T , f ) E  ff~5(Q) by the 

following modifications: if f(7/) = (qo, q~) we let jr(,/) = % we add new nodes 7/i, 

i = 0 , . . . , 4 ,  so that ~ < ~/2< r b <  71 and 77 < T/4< ~/0, letting jr(~/,) = 7 + i for 

i = 2 , 3 , 4  and f ( ~ ) = q ~  for i = 0 , 1 .  It is straightforward to check that 

( T , f ) ~ ( T , f )  is indeed a local embedding of ff~5(Q • Q) into 9-~LS(Q). 

7.17. LEMMA. 9-~5(Q) is embeddable into ~ ( Q ) .  

PROOF. We define the embedding H by induction on Dp(T). If D p ( T ) = 0  

then f(( ) ) = q E Q  and we let H ( T , f ) = q .  If D p ( T ) > 0  we let H ( T , f ) =  

{{H((T,f)t,)): l (n)  = 1}: X:~< >) times} (this is a set with repetitions). 

7.18. LEMMA. ~<| is embeddable into 3-~<~(Q). 

PROOF. We define the embedding H by induction on D p ( a ) =  

min{a :a  E ~ (Q)} .  If D p ( a ) = 0  we let H ( a )  be a tree with a single node 

labeled a. If D p ( a ) > 0  we let H ( a )  be a tree constructed from copies of the 

H(b) 's ,  b ranging over the elements of a, so that each node in level 1 of H ( a )  

corresponds to one such b (being the root of a copy of H(b));  we choose 

arbitrarily a well-ordering of level 1, and also an element of Q among the labels 

in this level to label the root of H(a).  

7.19. THEOREM. Suppose Q is not ~to-I-bqo. Then the following conditions on 
~"<0o, ~-1, ~7-0, ~-1,  07"-1 ~<~, 3<~, 9 "-~, I< are equivalent for X ~ {I, D }, F E {if2, 2 1 0 t~  < = ,  

--2 -2 .5  if<| 

(1) (~ is [r  ;l, lo]-bqo. 

(2) F(Q) is K-X-bqo. 

(3) F(Q) is r-X-well-ordered. 
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REMARK. As  (1) does not involve X or F, we get all var iants  are equivalent .  

PROOF. If F is one  of the ~-t or  ~-~<=, l > 0, use the results in w Now,  using 

the results of this section,  one can see that  the t h e o r e m  holds also for  the o ther  

F ' s  listed. 
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